skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced miscibility and strain resistance of blended elastomer/π‐conjugated polymer composites through side chain functionalization towards stretchable electronics
Abstract This work presents improved compatibility in an elastomer/π‐conjugated polymer blend through side chain functionalization of the electronic polymer. Poly[(3‐(6‐bromohexyl)thiophene)‐ran‐(3‐hexylthiophene)] (P3BrxHT,x = 0%–100%) was synthesized (i) to improve miscibility with polybutadiene (PB) elastomer through altered π–π interactions and (ii) to covalently bond across phase‐segregated interfaces. Functionalization led to morphology with reduced domain sizes to improve crack onset strain from 7% to 40%. Furthermore, UV‐activated crosslinking reinforced mechanically weak interfaces and yielded at least an additional 40% increase in crack onset strain. Charge mobility in PB/P3BrxHT organic field‐effect transistors showed minimal dependence on bromide concentration and no negative effects from crosslinking. Functionalization was an effective method to reduce brittleness in PB/P3BrxHT blends through morphology modification and crosslinking to improve stability towards strain for potential stretchable electronic applications. © 2019 Society of Chemical Industry  more » « less
Award ID(s):
1708317 1719797
PAR ID:
10458521
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer International
Volume:
69
Issue:
3
ISSN:
0959-8103
Format(s):
Medium: X Size: p. 308-316
Size(s):
p. 308-316
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mechanically deformable polymeric semiconductors are a key material for fabricating flexible organic thin‐film transistors (FOTFTs)—the building block of electronic circuits and wearable electronic devices. However, for many π‐conjugated polymers achieving mechanical deformability and efficient charge transport remains challenging. Here the effects of polymer backbone bending stiffness and film microstructure on mechanical flexibility and charge transport are investigated via experimental and computational methods for a series of electron‐transporting naphthalene diimide (NDI) polymers having differing extents of π‐conjugation. The results show that replacing increasing amounts of the π‐conjugated comonomer dithienylvinylene (TVT) with the π‐nonconjugated comonomer dithienylethane (TET) in the backbone of the fully π‐conjugated polymeric semiconductor, PNDI‐TVT100(yielding polymeric series PNDI‐TVTx, 100 ≥x≥ 0), lowers backbone rigidity, degree of texturing, and π–π stacking interactions between NDI moieties. Importantly, this comonomer substitution increases the mechanical robustness of PNDI‐TVTxwhile retaining efficient charge transport. Thus, reducing the TVT content of PNDI‐TVTxsuppresses film crack formation and dramatically stabilizes the field‐effect electron mobility upon bending (e.g., 2 mm over 2000 bending cycles). This work provides a route to tune π–π stacking in π‐conjugated polymers while simultaneously promoting mechanical flexibility and retaining good carrier mobility in FOTFTs. 
    more » « less
  2. Abstract Conjugated polymers consist of complex backbone structures and side‐chain moieties to meet various optoelectronic and processing requirements. Recent work on conjugated polymers has been devoted to studying the mechanical properties and developing new conjugated polymers with low modulus and high‐crack onset strain, while the thin film mechanical stability under long‐term external tensile strain is less investigated. Here we performed direct mechanical stress relaxation tests for both free‐standing and thin film floated on water surface on both high‐Tgand low‐Tgconjugated polymers, as well as a reference nonconjugated sample, polystyrene. We measured thin films with a range of film thickness from 38 to 179 nm to study the temperature and thickness effect on thin film relaxation, where an apparent enthalpy–entropy compensation effect for glassy polymer PS and PM6 thin films was observed. We also compared relaxation times across three different conjugated polymers and showed that both crystalline morphology and higher modulus reduce the relaxation rate besides higher glass transition temperature. Our work provides insights into the mechanical creep behavior of conjugated polymers, which will have an impact on the future design of stable functional organic electronics. 
    more » « less
  3. An alkyl-substituted indacenodithiophene-based donor–acceptor π-conjugated polymer ( PIDTBPD ) with low stiffness and high ductility is reported. The polymer was synthesized after DFT calculations predicted that it would have a kinked backbone conformation while showing strong intramolecular charge transfer (ICT), suggestive of the fact that it would be beneficial to the polymer's elasticity and charge mobility. Atom-efficient direct arylation polymerization (DArP) was exploited to synthesize the polymer. Mechanical studies indicate that PIDTBPD has relatively rapid stress-relaxation properties, which lead to a low elastic modulus of 200 MPa and high crack-onset strain of ca . 40% (lower limit). A moderate charge carrier mobility of 2 × 10 −3 cm 2 V −1 s −1 with a current on/off ratio of 2.5 × 10 6 was obtained from the fabricated OFETs. Further experiments were performed to elucidate the structural aspects of this polymer: UV-Vis and PL spectra suggest that minimal conformational change occurs in the polymer between its diluted solution and thin film states; DSC measurements indicate that the polymer's T g is below −20 °C, allowing it to be in a rubbery state at room temperature; and XRD studies support this observation suggesting that the polymer is mostly amorphous at room temperature. 
    more » « less
  4. Van Mullem, T.; De Belie, N.; Ferrara, L.; Gruyaert, E.; Van Tittelboom, K. (Ed.)
    The goal of this research is to develop innovative damage-responsive bacterial-based self-healing fibers (hereafter called BioFiber) that can be incorporated into concrete to enable two functionalities simultaneously: (1) crack bridging functionality to control crack growth and (2) crack healing functionality when a crack occurs. The BioFiber is comprised of a load-bearing core fiber, a sheath of bacteria-laden hydrogel, and an outer impermeable strain-responsive shell coating. An instant soaking manufacturing process was used with multiple reservoirs containing bacteria-laden, hydrophilic prepolymer and crosslinking reagents to develop BioFiber. Sodium-alginate was used as a prepolymer to produce calcium-alginate hydrogel via ionic crosslinking on the core fiber. The dormant bacteria (spore) ofLysinibacillus sphaericuswas incorporated in hydrogel as a self-healing agent. Then, an impermeable polymeric coating was applied to the hydrogel-coated core fibers. The impermeable strain-responsive shell coating material was manufactured using the polymer blend of polystyrene and polylactic acid. The high swelling capacity of calcium-alginate provides the water required for the microbially induced calcium carbonate precipitation (MICP) chemical pathway, i.e., ureolysis in this study. The strain-responsive impermeable coating provides adequate flexibility during concrete casting to protect the spores and alginate before cracking and sufficient stress-strain behavior to grant damage-responsiveness upon crack occurrence to activate MICP. To evaluate the behavior of developed BioFiber, the swelling capacity of the hydrogel, the impermeability of shell coating, the spore casting survivability, and MICP activities were investigated. 
    more » « less
  5. Abstract π‐conjugated polymers (CPs) that are concurrently soft and stretchable are needed for deformable electronics. Molecular‐level modification of indacenodithiophene (IDT) copolymers, a class of CPs that exhibit high hole mobilities (hole), is an approach that can help realize intrinsically soft and stretchable CPs. Numerous examples of design strategies to adjust the stretchability of CPs exist, but imparting softness is comparatively less studied. In this study, a systematic molecular weight (MW) series is constructed on a promising candidate for soft CPs, poly(indacenodithiophene‐co‐thienopyrroledione) (p(IDTC16‐TPDC8)), by optimizing direct arylation polymerization conditions in hopes of improving stretchability andμholewithout significantly impacting softness. We found p(IDTC16‐TPDC8) at a degree of polymerization of 32 shows high stretchability (crack onset strain,CoS> 100%) without significantly impacting softness (elastic modulus,E= 32 MPa), which to the best of our knowledge outperforms previously reported stretchable and soft CPs. To further study how molecular‐level modifications impact polymer properties, a MW series of a new extended donor unit polymer, poly(indacenodithienothiophene‐co‐thienopyrroledione) (p(IDTTC16‐TPDC8)), was synthesized. The IDTTC16copolymers did not result in a greater averageμholewhen comparing between p(IDTTC16‐TPDC8) and p(IDTC16‐TPDC8) despite their higher crystallinity observed by GIWAXS. While these findings warrant further investigation, this study points toward unique charge transport properties of IDT‐based polymers. 
    more » « less