skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mix and Match: Organic and Inorganic Ions in the Perovskite Lattice
Abstract Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoretically and, under various experimental conditions, select the constituting fragments of a crystal. One intriguing playground for such materials design is the perovskite structure. While a game of mixing and matching ions has been played successfully for about 150 years within the limits of inorganic compounds, the recent advances in organic–inorganic hybrid perovskite photovoltaics have triggered the inclusion of organic ions. Organic ions can be incorporated on all sites of the perovskite structure, leading to hybrid (double, triple, etc.) perovskites and inverse (hybrid) perovskites. Examples for each of these cases are known, even with all three sites occupied by organic molecules. While this change from monatomic ions to molecular species is accompanied with increased complexity, it shows that concepts from traditional inorganic perovskites are transferable to the novel hybrid materials. The increased compositional space holds promising new possibilities and applications for the universe of perovskite materials.  more » « less
Award ID(s):
1719353
PAR ID:
10458590
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
47
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inorganic halide perovskites (IHPs) have recently attracted huge attention in the field of optoelectronics. IHPs are generally expected to exhibit superior chemical stability over the prevailing hybrid organic–inorganic perovskites that are widely used in optoelectronic devices such as solar cells and light-emitting devices. This is primarily owing to the elimination of weakly-bonded organic components in the IHP crystal structure. Nevertheless, many recent studies have revealed that IHPs still suffer significant issues in chemical instability, and thus, a lot of effort has been made towards the stabilization of IHPs for high-performance devices. In this context, a great deal of interest in the chemistry and perovskite community has been emerging to understand the chemical (in)stability of IHPs and develop engineering strategies for making more robust perovskite devices. This review will summarize the past research progress in this direction, give insights into the IHP (in)stability, and provide perspectives for the future effort in making stable IHP materials and devices. 
    more » « less
  2. Abstract Hybrid organic–inorganic perovskite light‐emitting devices (LEDs) have recently shown the characteristic dynamical behavior of light‐emitting electrochemical cells (LECs), with intrinsic ionic migration creating an electric double layer and internal p‐i‐n structure and by accumulation of ions at interfaces. Therefore, the development of perovskite light‐emitting and photovoltaic devices based on the concepts of LEC operation attracts much attention and clarifies general physical processes in perovskites. Here, new directions that can further improve perovskite optoelectronic devices and extend their functionalities using additive mobile ions are overviewed: 1) enhancing single‐layer LECs with lithium additives for increased efficiency and longer lifetime; 2) facilitating ionic motion in three‐layer perovskite LECs to create dual‐functional devices, operating as both LEC and solar cells; and 3) creating truly ambipolar LEC devices with carbon nanotubes as stable electrodes that leverage ionic doping. Taken together, the use of these approaches provides a strategy to create efficient, stable, and bright LECs, which use advantages of both LED and LEC operation. It is discussed that how the LEC behavior in perovskite LEDs can be further improved to address the long‐term challenges in perovskite optoelectronics, such as stability, through approaches like ionically reconfigurable host/guest systems. 
    more » « less
  3. Abstract Organic‐inorganic hybrid perovskite solar cells are susceptible to multiple influencing factors such as moisture, oxygen, heat stress, ion migration. Given the complex practical working conditions for solar cells, a fundamental question is how different failure mechanisms collaborate and substantially accelerate the device degradation. In this study, it is found that ion migration can accelerate the reaction between oxygen and methylammonium lead iodide perovskite in light conditions. This is suggested since regions with local electric fields suffer from more severe decomposition. Here it is reported that cesium ions (Cs+) incorporated in perovskite lattice, with a moderate doping concentration (e.g. 5%), can function as stabilizers to efficiently interrupt such a synergistic effect between oxygen induced degradation and ion migration while retaining the high performance of perovskite solar cells. Both experimental and theoretical results suggest that 5% Cs+ions incorporation simultaneously suppresses the formation of reactive superoxide ions () as well as ion migration in perovskites by forming additional energy barriers. This A‐site cations engineering is also a promising strategy to circumvent the detrimental effect of oxygen molecules in FA‐based perovskites, which is important for developing high‐efficiency perovskite solar cells with enhanced stability. 
    more » « less
  4. Abstract 2D hybrid organic–inorganic perovskites are potentially promising materials as passivation layers that can enhance the efficiency and stability of perovskite photovoltaics. The ability to suppress ion transport is proposed as a stabilization mechanism, yet an effective characterization of relevant modes of halide diffusion in 2D perovskites is nascent. In light of this knowledge gap, molecular dynamics simulations with enhanced sampling and experimental validation to systematically characterize how ligand chemistry in seven (R‐NH3)2PbI4systems impacts halide diffusion, particularly in the out‐of‐plane direction is combined. It is found that increasing stiffness and length of ligands generally inhibits ion transport, while increasing ligand polarization generally enhances it. Structural and energetic analyses of the migration pathways provide quantitative explanations for these trends, which reflect aspects of the disorder of the organic layer. Overall, this mechanistic analysis greatly enhances the current understanding of halide migration in 2D hybrid organic–inorganic perovskites and yields insights that can inform the design of future passivation materials. 
    more » « less
  5. Two-dimensional (2D) organic–inorganic hybrid halide perovskites exhibit unique properties, such as long charge carrier lifetimes, high photoluminescence quantum efficiencies, and great tolerance to defects. Over the last several decades tremendous progress has occurred in the development of 2D layered halide perovskite semiconductor materials and devices. Chemical functionalization of 2D halide perovskites is an effective approach for tuning their electronic properties. A large amount of effort has been made in compositional engineering of the cations and anions in the perovskite lattice. However, few efforts have incorporated rationally designed semiconducting organic moieties into these systems to alter the overall chemical and optoelectronic properties of 2D perovskites. In fact, incorporation of large conjugated organic groups in the spatially confined inorganic perovskite matrix was found to be challenging, and this synthetic challenge hinders a deeper understanding of the materials’ structure–property relationships. Recently, exciting progress has been made regarding the molecular design, optical characterization, and device fabrication of novel 2D halide perovskite materials that incorporate functional organic semiconducting building blocks. In this article, we provide a timely review regarding this recent progress. Moreover, we discuss successes and current challenges regarding the synthesis, characterization, and device applications of such hybrid materials and provide a perspective on the true future promise of these advanced nanomaterials. 
    more » « less