skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dual‐Electromagnetic Field Enhancements through Suspended Metal/Dielectric/Metal Nanostructures and Plastic Phthalates Detection in Child Urine
Abstract Plasmonic nanostructures exhibit intriguing optical properties due to spectrally selective plasmon resonance and thus have broad applications, including biochemical sensing and photoelectric detections. However, excited plasmons are often strongly influenced by the substrates supporting the metallic nanostructures, which not only weakens the intrinsic plasmon coupling effect, but also results in a great reduction of optical near‐field enhancement. Here, a plasmonic nanostructure combining collapsible Au‐nanofingers with selective‐etching that enables Au to be suspended is demonstrated, thus avoiding the undesirable influence of the substrates on the local near‐field distribution and forming symmetric electromagnetic‐field enhancements at both the top and bottom surfaces. The polymer support of the Au‐nanofingers is selectively etched by oxygen plasma, while the Au‐cap retains its original size. After an ultrathin dielectric coating is applied on the Au‐nanofingers, suspended Au‐caps with extremely small dielectric gaps are formed via the collapse of neighboring Au‐nanofingers by exposing them to ethanol. These nanostructures can provide a surface‐enhanced Raman scattering (SERS) enhancement of up to ≈109, which is nearly twice that in the nonsuspended system. As a highly active SERS substrate, the label‐free detection of low‐concentration harmful plastic phthalates in a child's urine without any pretreatment is successfully demonstrated, which suggests that this method is suitable for medical prediagnosis.  more » « less
Award ID(s):
1635612
PAR ID:
10458837
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
8
Issue:
2
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Great opportunities emerge not only in the generation of anisotropic plasmonic nanostructures but also in controlling their orientation relative to incident light. Herein, a stepwise seeded growth method is reported for the synthesis of rod‐shaped plasmon nanostructures which are vertically self‐aligned with respect to the surface of colloidal substrates. Anisotropic growth of metal nanostructure is achieved by depositing metal seeds onto the surface of colloidal substrates and then selectively passivating the seed surface to induce symmetry breaking in the subsequent seed‐mediated growth process. The versatility of this method is demonstrated by producing nanoparticle dimers and linear trimers of Au, Au–Ag, Au–Pd, and Au–Cu2O. Further, this unique method enables the automatic vertical alignment of the resulting plasmonic nanostructures to the surface of the colloidal substrate, thereby making it possible to design magnetic/plasmonic nanocomposites that allow the dynamic tuning of the plasmon excitation by controlling their orientation using an external magnetic field. The controlled anisotropic growth of colloidal plasmonic nanostructures and their dynamic modulation of plasmon excitation further allow them to be conveniently fixed in a thin polymer film with a well‐controlled orientation to display polarization‐dependent patterns that may find important applications in information encryption. 
    more » « less
  2. Abstract Light coupling with patterned subwavelength hole arrays induces enhanced transmission supported by the strong surface plasmon mode. In this work, a nanostructured plasmonic framework with vertically built‐in nanohole arrays at deep‐subwavelength scale (6 nm) is demonstrated using a two‐step fabrication method. The nanohole arrays are formed first by the growth of a high‐quality two‐phase (i.e., Au–TiN) vertically aligned nanocomposite template, followed by selective wet‐etching of the metal (Au). Such a plasmonic nanohole film owns high epitaxial quality with large surface coverage and the structure can be tailored as either fully etched or half‐way etched nanoholes via careful control of the etching process. The chemically inert and plasmonic TiN plays a role in maintaining sharp hole boundary and preventing lattice distortion. Optical properties such as enhanced transmittance and anisotropic dielectric function in the visible regime are demonstrated. Numerical simulation suggests an extended surface plasmon mode and strong field enhancement at the hole edges. Two demonstrations, including the enhanced and modulated photoluminescence by surface coupling with 2D perovskite nanoplates and the refractive index sensing by infiltrating immersion liquids, suggest the great potential of such plasmonic nanohole array for reusable surface plasmon‐enhanced sensing applications. 
    more » « less
  3. Abstract Due to their ability to strongly modify the local optical field through the excitation of surface plasmon polaritons (SPPs), plasmonic nanostructures are often used to reshape the emission direction and enhance the radiative decay rate of quantum emitters, such as semiconductor quantum dots (QDs). These features are essential for quantum information processing, nanoscale photonic circuitry, and optoelectronics. However, the modification and enhancement demonstrated thus far have typically led to drastic alterations of the local energy density of the emitters, and hence their intrinsic optical properties, leaving little room for active control. Here, dynamic tuning of the energy states of a single semiconductor QD is demonstrated by optically modifying its local dielectric environment with a nearby plasmonic structure, instead of directly coupling it to the QD. This technique leaves intact the intrinsic optical properties of the QD, while enabling a reversible all‐optical control mechanism that operates below the diffraction limit at low power levels. 
    more » « less
  4. Plasmonic nanopatch antennas that incorporate dielectric gaps hundreds of picometers to several nanometers thick have drawn increasing attention over the past decade because they confine electromagnetic fields to grossly sub-diffraction-limited volumes. Substantial control over the optical properties of excitons and color centers confined within these plasmonic cavities has already been demonstrated with far-field optical spectroscopies, but near-field optical spectroscopies are essential for an improved understanding of the plasmon–emitter interaction at the nanoscale. Here, we characterize the intensity and phase-resolved plasmonic response of isolated nanopatch antennas by cathodoluminescence microscopy. Furthermore, we explore the distinction between optical and electron beam spectroscopies of coupled plasmon–exciton heterostructures to identify constraints and opportunities for future nanoscale characterization and control of hybrid nanophotonic structures. While we observe substantial Purcell enhancement in time-resolved photoluminescence spectroscopies, negligible Purcell enhancement is observed in cathodoluminescence spectroscopies of hybrid nanophotonic structures. The substantial differences in measured Purcell enhancement for electron beam and laser excitation can be understood as a result of the different selection rules for these complementary experiments. These results provide a fundamentally new understanding of near-field plasmon–exciton interactions in nanopatch antennas, which is essential for myriad emerging quantum photonic devices. 
    more » « less
  5. Abstract Two‐dimensional transition metal dichalcogenides (TMDs)/graphene van der Waals (vdW) heterostructures integrate the superior light–solid interaction in TMDs and charge mobility in graphene, and therefore are promising for surface‐enhanced Raman spectroscopy (SERS). Herein, a novel TMD (MoS2and WS2) nanodome/graphene vdW heterostructure SERS substrate, on which an extraordinary SERS sensitivity is achieved, is reported. Using fluorescent Rhodamine 6G (R6G) as probe molecules, the SERS sensitivity is in the range of 10−11to 10−12mon the TMD nanodomes/graphene vdW heterostructure substrates using 532 nm Raman excitation, which is comparable to the best sensitivity reported so far using plasmonic metal nanostructures/graphene SERS substrates, and is more than three orders of magnitude higher than that on single‐layer TMD and graphene substrates. Density functional theory simulation reveals enhanced electric dipole moments and dipole–dipole interaction at the TMD/graphene vdW interface, yielding an effective means to facilitate an external electrostatic perturbation on the graphene surface and charge transfer. This not only promotes chemical enhancement on SERS, but also enables electromagnetic enhancement of SERS through the excitation of localized surface plasmonic resonance on the TMD nanodomes. This TMD nanodome/graphene vdW heterostructure is therefore promising for commercial applications in high‐performance optoelectronics and sensing. 
    more » « less