skip to main content


Title: Dietary shifts across biogeographic scales alter spatial subsidy dynamics
Abstract

Over heterogeneous landscapes, organisms and energy move across ecological boundaries and this can have profound effects on overall ecosystem functioning. Both abiotic and biotic factors along habitat boundaries may facilitate or impede key species interactions that drive these energy flows—especially along the land–sea interface. We synthesized the literature detailing estuarine fish diets and habitat characteristics of salt marshes from U.S. East and Gulf coasts to determine patterns and drivers of cross‐boundary trophic transfers at the land–sea interface. Notably, marsh‐platform species (i.e., killifishes, fiddler crabs) appear virtually absent in the diets of transient estuarine fishes in the Gulf of Mexico, while along the South Atlantic and Mid‐Atlantic Bights, marsh‐platform species appear regularly in the diets of many transient estuarine fishes. Tidal amplitude varied across these three biogeographic regions and likely regulates the availability of marsh‐platform species to transient estuarine fishes via both access to the marsh surface for marine predators and emergence of marsh‐resident prey into the adjacent estuary (i.e., higher tidal amplitude increases predator–prey encounter rates). Surprisingly, marsh shoot density was positively correlated with the presence of marsh‐platform species in the diet, but this pattern appears to be mediated by increased tidal amplitude, suggesting the mode and periodicity of abiotic cycles drive diet structure of transient estuarine fishes more so than local habitat structural complexity. Subsequently, these processes likely influence the degree to which “trophic relay” moves energy from the marsh toward the open estuary. Understanding the dynamics that determine energy flows, spatial subsidies, and ultimately, ecosystem‐level productivity, is essential for implementation of holistic ecosystem‐based approaches to conserve and manage complex landscape mosaics.

 
more » « less
Award ID(s):
1926395
NSF-PAR ID:
10458974
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
10
Issue:
12
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Climate change is altering naturally fluctuating environmental conditions in coastal and estuarine ecosystems across the globe. Departures from long-term averages and ranges of environmental variables are increasingly being observed as directional changes [e.g., rising sea levels, sea surface temperatures (SST)] and less predictable periodic cycles (e.g., Atlantic or Pacific decadal oscillations) and extremes (e.g., coastal flooding, marine heatwaves). Quantifying the short- and long-term impacts of climate change on tidal marsh seascape structure and function for nekton is a critical step toward fisheries conservation and management. The multiple stressor framework provides a promising approach for advancing integrative, cross-disciplinary research on tidal marshes and food web dynamics. It can be used to quantify climate change effects on and interactions between coastal oceans (e.g., SST, ocean currents, waves) and watersheds (e.g., precipitation, river flows), tidal marsh geomorphology (e.g., vegetation structure, elevation capital, sedimentation), and estuarine and coastal nekton (e.g., species distributions, life history adaptations, predator-prey dynamics). However, disentangling the cumulative impacts of multiple interacting stressors on tidal marshes, whether the effects are additive, synergistic, or antagonistic, and the time scales at which they occur, poses a significant research challenge. This perspective highlights the key physical and ecological processes affecting tidal marshes, with an emphasis on the trophic linkages between marsh production and estuarine and coastal nekton, recommended for consideration in future climate change studies. Such studies are urgently needed to understand climate change effects on tidal marshes now and into the future. 
    more » « less
  2. Consumer-mediated movement can couple food webs in distinct habitats and facilitate energy flow between them. In New England saltmarshes, mummichogs (Fundulus heteroclitus) connect the vegetated marsh and creek food webs by opportunistically foraging on the invertebrate communities of the marsh surface when access is permitted by tidal flooding and marsh-edge geomorphology. Via their movements, mummichog represent a critical food web node, as they can potentially transport energy from the marsh surface food web to creek food web and exert top-down control on the communities of the vegetated marsh surface. Here, I use gut content analysis, calorimetric analysis, and field surveys to demonstrate that access to the marsh surface (afforded by marsh-edge geomorphology) impacts the trophic relay of marsh production to creek food webs. Fish populations in creeks with greater connectivity had a higher total biomass of terrestrial invertebrates in their guts. However, bomb calorimetry showed no difference in the average caloric content of mummichog individuals from creeks with different creek edge geomorphology. Access also did not impact mummichog distribution across the marsh platform and exhibited no evidence of top-down control on their invertebrate prey. Thus, mummichogs function as initial nodes in the trophic relay, unidirectionally moving energy from the vegetated marsh to the creek food web. Reduced marsh surface access via altered marsh-edge geomorphology results in a 50 % to 66 % reduction in total energy available to aquatic predators via this route. Estuarine systems are intimately connected to coastal and offshore systems via consumer mediated flows of energy; thus, disruptions to the trophic relay from the marsh surface at the tidal creek scale can have far reaching impacts on secondary productivity in multiple disparate systems and must be accounted for in considerations of impacts to future food-web function. 
    more » « less
  3. Dam, Hans G. (Ed.)
    Siphonophores (Cnidaria: Hydrozoa) are abundant and diverse gelatinous predators in open-ocean ecosystems. Due to limited access to the midwater, little is known about the diets of most deep-dwelling gelatinous species, which constrains our understanding of food-web structure and nutrient flow in these vast ecosystems. Visual gut-content methods can rarely identify soft-bodied rapidly-digested prey, while observations from submersibles often overlook small prey items. These methods have been differentially applied to shallow and deep siphonophore taxa, confounding habitat and methodological biases. DNA metabarcoding can be used to assess both shallow and deep species’ diets under a common methodological framework, since it can detect both small and gelatinous prey. We (1) further characterized the diets of open-ocean siphonophores using DNA metabarcoding, (2) compared the prey detected by visual and molecular methods to evaluate their technical biases, and (3) evaluated tentacle-based predictions of diet. To do this, we performed DNA metabarcoding analyses on the gut contents of 39 siphonophore species across depths to describe their diets, using six barcode regions along the 18S gene. Taxonomic identifications were assigned using public databases combined with local zooplankton sequences. We identified 55 unique prey items, including crustaceans, gelatinous animals, and fish across 47 siphonophore specimens in 24 species. We reported 29 novel predator-prey interactions, among them the first insights into the diets of nine siphonophore species, many of which were congruent with the dietary predictions based on tentilla morphology. Our analyses detected both small and gelatinous prey taxa underrepresented by visual methods in species from both shallow and deep habitats, indicating that siphonophores play similar trophic roles across depth habitats. We also reveal hidden links between siphonophores and filter-feeders near the base of the food web. This study expands our understanding of the ecological roles of siphonophores in the open ocean, their trophic roles within the ‘jelly-web’, and the importance of their diversity for nutrient flow and ecosystem functioning. Understanding these inconspicuous yet ubiquitous predator-prey interactions is critical to predict the impacts of climate change, overfishing, and conservation policies on oceanic ecosystems. 
    more » « less
  4. Abstract

    The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role ofAmmodytesto inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role ofAmmodytesin the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consumeAmmodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution ofAmmodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment ofAmmodytesin the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.

     
    more » « less
  5. Blue crabs Callinectes sapidus have expanded their geographic range northward in the NW Atlantic with possible trophodynamic effects on benthic communities. In this study, we examined the blue crab’s diet in 2 southern New England tidal rivers (USA) and expounded on their predator-prey interaction with juvenile winter flounder Pseudopleuronectes americanus . Blue crabs (8-185 mm carapace width [CW]; n = 1835) were collected from the Seekonk River, Rhode Island, and Taunton River, Massachusetts, between May and August 2012 to 2016, and their feeding habits were assessed via stomach content, stable isotope, and molecular genetic analyses. Blue crabs were found to be generalist carnivores-omnivores with diets varying throughout ontogeny, yet shifts in prey composition had no effect on size-based nitrogen isotope signatures and trophic position (3.50 ± 0.35, mean ± SD). Carbon isotope values indicated that detritus-macroalgae were the dominant carbon source to the food web, with additional contributions from terrestrially derived organic matter and phytoplankton in oligohaline and polyhaline waters, respectively. The main prey of blue crabs ≤49 mm CW were amphipods, shrimp, and unidentified crustaceans, and larger conspecifics fed on bivalves, crabs, and fish. Winter flounder remains, e.g. sagittal otoliths, were identified in the diet of 2.5% of field-collected blue crabs, whereas PCR-based assays detected winter flounder DNA in 17.7% of crab stomachs. Blue crabs 23 to 160 mm CW preyed on winter flounder ranging from 26 to 66 mm total length, with occurrences of predation most closely associated with increases in crab size. Blue crab predation on winter flounder also varied spatially in the rivers, reflecting site-specific differences in flounder densities, abundances of other preferred prey, and dissolved oxygen concentrations that altered predator-prey dynamics. Lastly, the current predatory impact of blue crabs on juvenile winter flounder is nearly equivalent to other portunid crab species. Anticipated temperature-mediated increases in blue crab densities at northern latitudes, however, will intensify the predator-induced mortality of winter flounder and likely hinder their recovery in southern New England. 
    more » « less