ABSTRACT In this work, we examine the impact of our motion with respect to the Cosmic Microwave Background (CMB) rest frame on statistics of CMB maps by examining the one-, two-, three-, and four- point statistics of simulated maps of the CMB and Sunyaev–Zeldovich (SZ) effects. We validate boosting codes by comparing their outcomes for temperature and polarization power spectra up to ℓ ≃ 6000. We derive and validate a new analytical formula for the computation of the boosted power spectrum of a signal with a generic frequency dependence. As an example we show how this increases the boosting correction to the power spectrum of CMB intensity measurements by $${\sim}30{{\ \rm per\ cent}}$$ at 150 GHz. We examine the effect of boosting on thermal and kinetic SZ power spectra from semianalytical and hydrodynamical simulations; the boosting correction is generally small for both simulations, except when considering frequencies near the tSZ null. For the non-Gaussian statistics, in general we find that boosting has no impact with two exceptions. We find that, whilst the statistics of the CMB convergence field are unaffected, quadratic estimators that are used to measure this field can become biased at the $$O(1){{\ \rm per\ cent}}$$ level by boosting effects. We present a simple modification to the standard estimators that removes this bias. Second, bispectrum estimators can receive a systematic bias from the Doppler induced quadrupole when there is anisotropy in the sky – in practice this anisotropy comes from masking and inhomogeneous noise. This effect is unobservable and already removed by existing analysis methods.
more »
« less
Inpainting Hydrodynamical Maps with Deep Learning
Abstract From 1000 hydrodynamic simulations of the CAMELS project, each with a different value of the cosmological and astrophysical parameters, we generate 15,000 gas temperature maps. We use a state-of-the-art deep convolutional neural network to recover missing data from those maps. We mimic the missing data by applying regular and irregular binary masks that cover either 15% or 30% of the area. We quantify the reliability of our results using two summary statistics: (1) the distance between the probability density functions, estimated using the Kolmogorov–Smirnov (K-S) test, and (2) the 2D power spectrum. We find an excellent agreement between the model prediction and the unmasked maps when using the power spectrum: better than 1% for k < 20 h Mpc −1 for any irregular mask. For regular masks, we observe a systematic offset of ∼5% when covering 15% of the maps, while the results become unreliable when 30% of the data is missing. The observed K-S test p -values favor the null hypothesis that the reconstructed and the ground-truth maps are drawn from the same underlying distribution when irregular masks are used. For regular-shaped masks, on the other hand, we find a strong evidence that the two distributions do not match each other. Finally, we use the model, trained on gas temperature maps, to inpaint maps from fields not used during model training. We find that, visually, our model is able to reconstruct the missing pixels from the maps of those fields with great accuracy, although its performance using summary statistics depends strongly on the considered field.
more »
« less
- Award ID(s):
- 2108944
- PAR ID:
- 10459001
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 941
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 132
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysical or cosmological quantities derived from measurements. We consider a theoretical treatment of the effect of line broadening on both the clustering and shot-noise components of the power spectrum of a generic line-intensity power spectrum using a halo model. We then consider possible simplifications to allow easier application in analysis, particularly in the context of inferences that require numerous, repeated, fast computations of model line-intensity signals across a large parameter space. For the CO Mapping Array Project and the CO(1–0) line-intensity field at z ∼ 3 serving as our primary case study, we expect a ∼10% attenuation of the spherically averaged power spectrum on average at relevant scales of k ≈ 0.2–0.3 Mpc −1 compared to ∼25% for the interferometric Millimetre-wave Intensity Mapping Experiment targeting shot noise from CO lines at z ∼ 1–5 at scales of k ≳ 1 Mpc −1 . We also consider the nature and amplitude of errors introduced by simplified treatments of line broadening and find that while an approximation using a single effective velocity scale is sufficient for spherically averaged power spectra, a more careful treatment is necessary when considering other statistics such as higher multipoles of the anisotropic power spectrum or the voxel intensity distribution.more » « less
-
ABSTRACT We analyse the 1D spatial power spectra of dust surface density and mid to far-infrared emission at $$24\!-\!500\, \mu$$m in the LMC, SMC, M31, and M33. By forward-modelling the point spread function (PSF) on the power spectrum, we find that nearly all power spectra have a single power-law and point source component. A broken power-law model is only favoured for the LMC 24 μm MIPS power spectrum and is due to intense dust heating in 30 Doradus. We also test for local power spectrum variations by splitting the LMC and SMC maps into 820 pc boxes. We find significant variations in the power-law index with no strong evidence for breaks. The lack of a ubiquitous break suggests that the spatial power spectrum does not constrain the disc scale height. This contradicts claims of a break where the turbulent motion changes from 3D to 2D. The power spectrum indices in the LMC, SMC, and M31 are similar (2.0–2.5). M33 has a flatter power spectrum (1.3), similar to more distant spiral galaxies with a centrally-concentrated H2 distribution. We compare the power spectra of H i, CO, and dust in M31 and M33, and find that H i power spectra are consistently flatter than CO power spectra. These results cast doubt on the idea that the spatial power spectrum traces large scale turbulent motion in nearby galaxies. Instead, we find that the spatial power spectrum is influenced by (1) the PSF on scales below ∼3 times the FWHM, (2) bright compact regions (30 Doradus), and (3) the global morphology of the tracer (an exponential CO disc).more » « less
-
Magnetic field morphology and evolution in the Central Molecular Zone and its effect on gas dynamicsThe interstellar medium in the Milky Way’s Central Molecular Zone (CMZ) is known to be strongly magnetised, but its large-scale morphology and impact on the gas dynamics are not well understood. We explore the impact and properties of magnetic fields in the CMZ using three-dimensional non-self gravitating magnetohydrodynamical simulations of gas flow in an external Milky Way barred potential. We find that: (1) The magnetic field is conveniently decomposed into a regular time-averaged component and an irregular turbulent component. The regular component aligns well with the velocity vectors of the gas everywhere, including within the bar lanes. (2) The field geometry transitions from parallel to the Galactic plane near ɀ = 0 to poloidal away from the plane. (3) The magneto-rotational instability (MRI) causes an in-plane inflow of matter from the CMZ gas ring towards the central few parsecs of 0.01−0.1 M⊙yr−1that is absent in the unmagnetised simulations. However, the magnetic fields have no significant effect on the larger-scale bar-driven inflow that brings the gas from the Galactic disc into the CMZ. (4) A combination of bar inflow and MRI-driven turbulence can sustain a turbulent vertical velocity dispersion ofσɀ= 5 km s−1on scales of 20 pc in the CMZ ring. The MRI alone sustains a velocity dispersion ofσɀ≃ 3 km s−1. Both these numbers are lower than the observed velocity dispersion of gas in the CMZ, suggesting that other processes such as stellar feedback are necessary to explain the observations. (5) Dynamo action driven by differential rotation and the MRI amplifies the magnetic fields in the CMZ ring until they saturate at a value that scales with the average local density asB≃ 102 (n/103cm−3)0.33µG. Finally, we discuss the implications of our results within the observational context in the CMZ.more » « less
-
Abstract Reionization leads to large spatial fluctuations in the intergalactic temperature that can persist well after its completion. We study the imprints of such fluctuations on the $$z$$ ∼ 5 Ly α forest flux power spectrum using a set of radiation-hydrodynamic simulations that model different reionization scenarios. We find that large-scale coherent temperature fluctuations bring $${\sim}20\text{--}60{{\ \rm per\ cent}}$$ extra power at k ∼ 0.002 s km−1, with the largest enhancements in the models where reionization is extended or ends the latest. On smaller scales (k ≳ 0.1 s km−1), we find that temperature fluctuations suppress power by $${\lesssim}10{{\ \rm per\ cent}}$$. We find that the shape of the power spectrum is mostly sensitive to the reionization mid-point rather than temperature fluctuations from reionization’s patchiness. However, for all of our models with reionization mid-points of $$z$$ ≤ 8 ($$z$$ ≤ 12), the shape differences are $${\lesssim}20{{\ \rm per\ cent}}$$ ($${\lesssim}40{{\ \rm per\ cent}}$$) because of a surprisingly well-matched cancellation between thermal broadening and pressure smoothing that occurs for realistic thermal histories. We also consider fluctuations in the ultraviolet background, finding their impact on the power spectrum to be much smaller than temperature fluctuations at k ≳ 0.01 s km−1. Furthermore, we compare our models to power spectrum measurements, finding that none of our models with reionization mid-points of $$z$$ < 8 is strongly preferred over another and that all of our models with mid-points of $$z$$ ≥ 8 are excluded at 2.5σ. Future measurements may be able to distinguish between viable reionization models if they can be performed at lower k or, alternatively, if the error bars on the high-k power can be reduced by a factor of 1.5.more » « less
An official website of the United States government

