Abstract The most distant known trans-Neptunian objects (TNOs), those with perihelion distance above 38 au and semimajor axis above 150 au, are of interest for their potential to reveal past, external, or present but unseen perturbers. Realizing this potential requires understanding how the known planets influence their orbital dynamics. We use a recently developed Poincaré mapping approach for orbital phase space studies of the circular planar restricted three-body problem, which we have extended to the case of the 3D restricted problem withNplanetary perturbers. With this approach, we explore the dynamical landscape of the 23 most distant TNOs under the perturbations of the known giant planets. We find that, counter to common expectations, almost none of these TNOs are far removed from Neptune’s resonances. Nearly half (11) of these TNOs have orbits consistent with stable libration in Neptune’s resonances; in particular, the orbits of TNOs 148209 and 474640 overlap with Neptune’s 20:1 and 36:1 resonances, respectively. Five objects can be ruled currently nonresonant, despite their large orbital uncertainties, because our mapping approach determines the resonance boundaries in angular phase space in addition to semimajor axis. Only three objects are in orbital regions not appreciably affected by resonances: Sedna, 2012 VP113 and 2015 KG163. Our analysis also demonstrates that Neptune’s resonances impart a modest (few percent) nonuniformity in the longitude of perihelion distribution of the currently observable distant TNOs. While not large enough to explain the observed clustering, this small dynamical sculpting of the perihelion longitudes could become relevant for future, larger TNO data sets.
more »
« less
Can the orbital distribution of Neptune’s 3:2 mean-motion resonance result from stability sculpting?
ABSTRACT We explore a simplified model of the outcome of an early outer Solar System gravitational upheaval during which objects were captured into Neptune’s 3:2 mean-motion resonance via scattering rather than smooth planetary migration. We use N-body simulations containing the sun, the four giant planets, and test particles in the 3:2 resonance to determine whether long-term stability sculpting over 4.5 Gyr can reproduce the observed 3:2 resonant population from an initially randomly scattered 3:2 population. After passing our simulated 3:2 resonant objects through a survey simulator, we find that the semimajor axis (a) and eccentricity (e) distributions are consistent with the observational data (assuming an absolute magnitude distribution constrained by prior studies), suggesting that these could be a result of stability sculpting. However, the inclination (i) distribution cannot be produced by stability sculpting and thus must result from a distinct process that excited the inclinations. Our simulations modestly under-predict the number of objects with high-libration amplitudes (Aϕ), possibly because we do not model transient sticking. Finally, our model under-populates the Kozai subresonance compared to both observations and to smooth migration models. Future work is needed to determine whether smooth migration occurring as Neptune’s eccentricity damped to its current value can resolve this discrepancy.
more »
« less
- Award ID(s):
- 1824869
- PAR ID:
- 10459098
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 524
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3039 to 3051
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract There have been 77 TNOs discovered to be librating in the distant trans-Neptunian resonances (beyond the 2:1 resonance, at semimajor axes greater than 47.7 au) in four well-characterized surveys: the Outer Solar System Origins Survey (OSSOS) and three similar prior surveys. Here, we use the OSSOS Survey Simulator to measure their intrinsic orbital distributions using an empirical parameterized model. Because many of the resonances had only one or very few detections, j : k resonant objects were grouped by k in order to have a better basis for comparison between models and reality. We also use the Survey Simulator to constrain their absolute populations, finding that they are much larger than predicted by any published Neptune migration model to date; we also find population ratios that are inconsistent with published models, presenting a challenge for future Kuiper Belt emplacement models. The estimated population ratios between these resonances are largely consistent with scattering–sticking predictions, though further discoveries of resonant TNOs with high-precision orbits will be needed to determine whether scattering–sticking can explain the entire distant resonant population or not.more » « less
-
Abstract TESS and Kepler have revealed that practically all close-in sub-Neptunes form in mean-motion resonant chains, most of which unravel on timescales of 100 Myr. UsingN-body integrations, we study how planetary collisions from destabilized resonant chains produce the orbital period distribution observed among mature systems, focusing on the resonant fine structures remaining post-instability. In their natal chains, planets near first-order resonances have period ratios just wide of perfect commensurability, driven there by disk migration and eccentricity damping. Sufficiently large resonant libration amplitudes are needed to trigger instability. Ensuing collisions between planets (“major mergers”) erode but do not eliminate resonant pairs; surviving pairs show up as narrow “peaks” just wide of commensurability in the histogram of neighboring-planet period ratios. Merger products exhibit a broad range of period ratios, filling the space between relatively closely separated resonances such as the 5:4, 4:3, and 3:2, but failing to bridge the wider gap between the 3:2 and 2:1—a “trough” thus manifests just short of the 2:1 resonance, as observed. Major mergers generate debris that undergoes “minor mergers” with planets, in many cases further widening resonant pairs. With all this dynamical activity, free eccentricities of resonant pairs, and by extension the phases of their transit timing variations, are readily excited. Nonresonant planets, being merger products, are predicted to have higher masses than resonant planets, as observed. At the same time, a small fraction of mergers produce a high-mass tail in the resonant population, also observed.more » « less
-
ABSTRACT We carry out hydrodynamical simulations to study the eccentricity growth of a 1–30 Jupiter mass planet located inside the fixed cavity of a protoplanetary disc. The planet exchanges energy and angular momentum with the disc at resonant locations, and its eccentricity grows due to Lindblad resonances. We observe several phases of eccentricity growth where different eccentric Lindblad resonances dominate from 1:3 up to 3:5. The maximum values of eccentricity reached in our simulations are 0.65–0.75. We calculate the eccentricity growth rate for different planet masses and disc parameters and derive analytical dependencies on these parameters. We observe that the growth rate is proportional to both the planet’s mass and the characteristic disc mass for a wide range of parameters. In a separate set of simulations, we derived the width of the 1:3 Lindblad resonance.more » « less
-
The dynamics of the outer regular satellites of Saturn are driven primarily by the outward migration of Titan, but several independent constraints on Titan's migration are difficult to reconcile with the current resonant orbit of the small satellite Hyperion. We argue that Hyperion's rapid irregular tumbling greatly increases tidal dissipation with a steep dependence on orbital eccentricity. Resonant excitation from a migrating Titan is then balanced by damping in a feedback mechanism that maintains Hyperion's eccentricity without fine-tuning. The inferred tidal parameters of Hyperion are most consistent with rapid Titan migration enabled by a resonance lock with an internal mode of Saturn, but a scenario with only equilibrium dissipation in Saturn is also possible.more » « less
An official website of the United States government

