skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Benchmark coupled-cluster lattice energy of crystalline benzene and assessment of multi-level approximations in the many-body expansion
The many-body expansion (MBE) is promising for the efficient, parallel computation of lattice energies in organic crystals. Very high accuracy should be achievable by employing coupled-cluster singles, doubles, and perturbative triples at the complete basis set limit [CCSD(T)/CBS] for the dimers, trimers, and potentially tetramers resulting from the MBE, but such a brute-force approach seems impractical for crystals of all but the smallest molecules. Here, we investigate hybrid or multi-level approaches that employ CCSD(T)/CBS only for the closest dimers and trimers and utilize much faster methods like Møller–Plesset perturbation theory (MP2) for more distant dimers and trimers. For trimers, MP2 is supplemented with the Axilrod–Teller–Muto (ATM) model of three-body dispersion. MP2(+ATM) is shown to be a very effective replacement for CCSD(T)/CBS for all but the closest dimers and trimers. A limited investigation of tetramers using CCSD(T)/CBS suggests that the four-body contribution is entirely negligible. The large set of CCSD(T)/CBS dimer and trimer data should be valuable in benchmarking approximate methods for molecular crystals and allows us to see that a literature estimate of the core-valence contribution of the closest dimers to the lattice energy using just MP2 was overbinding by 0.5 kJ mol−1, and an estimate of the three-body contribution from the closest trimers using the T0 approximation in local CCSD(T) was underbinding by 0.7 kJ mol−1. Our CCSD(T)/CBS best estimate of the 0 K lattice energy is −54.01 kJ mol−1, compared to an estimated experimental value of −55.3 ± 2.2 kJ mol−1.  more » « less
Award ID(s):
1955940 1828187 1449723
PAR ID:
10459879
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
23
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To study the contribution of three-body dispersion to crystal lattice energies, we compute the three-body contributions to the lattice energies for crystalline benzene, carbon dioxide, and triazine using various computational methods. We show that these contributions converge quickly as the intermolecular distances between the monomers grow. In particular, the smallest value among the three pairwise intermonomer closest-contact distances, Rmin, shows a strong correlation with the three-body contribution to the lattice energy, and, here, the largest of the closest-contact distances, Rmax, serves as a cutoff criterion to limit the number of trimers to be considered. We considered all trimers up to Rmax=15Å. The trimers with Rmin<4Å contribute 90.4%, 90.6%, and 93.9% of the total three-body contributions for crystalline benzene, carbon dioxide, and triazine, respectively, for the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] method. For trimers with Rmin>4Å, the second-order Møller–Plesset perturbation theory (MP2) supplemented with the Axilrod–Teller–Muto (ATM) three-body dispersion correction reproduces the CCSD(T) values for the cumulative three-body contributions with errors of less than 0.1 kJ mol−1. Moreover, three-body contributions are converged within 0.15 kJ mol−1 by Rmax=10Å. From these results, it appears that in molecular crystals where dispersion dominates the three-body contribution to the lattice energy, the trimers with Rmin>4Å can be computed with the MP2+ATM method to reduce the computational cost, and those with Rmax>10Å appear to be basically negligible. 
    more » « less
  2. The many-body expansion, where one computes the total energy of a supersystem as the sum of the dimer, trimer, tetramer, etc., subsystems, provides a convenient approach to compute the lattice energies of molecular crystals. We investigate approximate methods for computing the non-additive three-body contributions to the crystal lattice energy of the polar molecules acetic acid, imidazole, and formamide, comparing to coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] level benchmarks. Second-order Møller–Plesset perturbation theory (MP2), if combined with a properly damped Axilrod–Teller–Muto dispersion potential, displays excellent agreement with CCSD(T) at a substantially reduced cost. Errors between dispersion-corrected MP2 and CCSD(T) are less than 1 kJ mol−1 for all three crystals. However, the three-body energy requires quite large distance cutoffs to converge, up to 20 Å or more. 
    more » « less
  3. Using the many-body expansion to predict crystal lattice energies (CLEs), a pleasantly parallel process, allows for flexibility in the choice of theoretical methods. Benchmark-level two-body contributions to CLEs of 23 molecular crystals have been computed using interaction energies of dimers with minimum inter-monomer separations (i.e., closest contact distances) up to 30 Å. In a search for ways to reduce the computational expense of calculating accurate CLEs, we have computed these two-body contributions with 15 different quantum chemical levels of theory and compared these energies to those computed with coupled-cluster in the complete basis set (CBS) limit. Interaction energies of the more distant dimers are easier to compute accurately and several of the methods tested are suitable as replacements for coupled-cluster through perturbative triples for all but the closest dimers. For our dataset, sub-kJ mol−1 accuracy can be obtained when calculating two-body interaction energies of dimers with separations shorter than 4 Å with coupled-cluster with single, double, and perturbative triple excitations/CBS and dimers with separations longer than 4 Å with MP2.5/aug-cc-pVDZ, among other schemes, reducing the number of dimers to be computed with coupled-cluster by as much as 98%. 
    more » « less
  4. This study systematically characterizes the four homogeneous and six heterogeneous hydrogen-bonded dimers formed by hydrogen halide pairs (HX/HY where X, Y = F, Cl, Br, and I). The notation HX⋯HY indicates the direction of the hydrogen bond from the HY donor to the HX acceptor. All stationary points reported for these ten dimer systems are fully optimized utilizing the MP2 and CCSD(T) ab initio methods in conjunction with quadruple-ζ correlation-consistent basis sets augmented with diffuse functions, and their nature is verified by harmonic vibrational frequency computations. The electronic dissociation energies (De) for all ten global minima are evaluated near the CCSD(T) complete basis set (CBS) limit via extrapolation schemes. These values are 19.11, 8.32, 7.38, and 6.22 kJ mol−1 for the homogeneous dimers of HF, HCl, HBr, and HI, respectively. For the heterogeneous pairs, the lighter hydrogen halide is consistently the donor in the global minimum configuration, with De ranging from 12.23 kJ mol−1 for HCl⋯HF to 7.22 kJ mol−1 for HI⋯HBr near the CCSD(T) CBS limit. Interestingly, not all heterodimer donor/acceptor permutations correspond to minima. For example, the HCl⋯HBr configuration is identified as a local minimum at all levels of theory employed in this investigation, whereas the in-plane barrier for donor/acceptor exchange vanishes for HCl⋯HI and HBr⋯HI when larger quadruple-ζ basis sets are utilized. For the seven dimer systems containing Br and/or I, the structures, energetics, and vibrational frequencies computed using conventional valence-only electron correlation procedures are similar to those obtained using an expanded valence treatment that includes the (n − 1)d subvalence electrons associated with Br and I. 
    more » « less
  5. The focal-point approximation can be used to estimate a high-accuracy, slow quantum chemistry computation by combining several lower-accuracy, faster computations. We examine the performance of focal-point methods by combining second-order Møller–Plesset perturbation theory (MP2) with coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] for the calculation of harmonic frequencies and that of fundamental frequencies using second-order vibrational perturbation theory (VPT2). In contrast to standard CCSD(T), the focal-point CCSD(T) method approaches the complete basis set (CBS) limit with only triple-ζ basis sets for the coupled-cluster portion of the computation. The predicted harmonic and fundamental frequencies were compared with the experimental values for a set of 20 molecules containing up to six atoms. The focal-point method combining CCSD(T)/aug-cc-pV(T + d)Z with CBS-extrapolated MP2 has mean absolute errors vs experiment of only 7.3 cm−1 for the fundamental frequencies, which are essentially the same as the mean absolute error for CCSD(T) extrapolated to the CBS limit using the aug-cc-pV(Q + d)Z and aug-cc-pV(5 + d)Z basis sets. However, for H2O, the focal-point procedure requires only 3% of the computation time as the extrapolated CCSD(T) result, and the cost savings will grow for larger molecules. 
    more » « less