skip to main content


Title: High‐Resolution Climate Projections for the Northeastern United States Using Dynamical Downscaling at Convection‐Permitting Scales
Abstract

To paraphrase former Speaker of the House Tip O'Neill, “All climate change is local”—that is, society reacts most immediately to changes in local weather such as regional heat waves and heavy rainstorms. Such phenomena are not well resolved by the current generation of coupled climate models. Here it is shown that dynamical downscaling of climate reanalyses using a high‐resolution regional model can reproduce both the means and extremes of temperature and precipitation as observed in the well‐measured northeastern United States. Given this result, the downscaling is applied to climate projections for the middle and end of the 21st century under Representative Concentration Pathway (RCP) 8.5 as well as for the historical time period to help assess regional climate impacts in the northeastern United States. The resulting high‐resolution projections are intended to support regional sustainability studies for the northeastern United States and are made publicly available.

 
more » « less
Award ID(s):
1101245
NSF-PAR ID:
10460387
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth and Space Science
Volume:
5
Issue:
11
ISSN:
2333-5084
Page Range / eLocation ID:
p. 801-826
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The impacts of climate change are felt by most critical systems, such as infrastructure, ecological systems, and power-plants. However, contemporary Earth System Models (ESM) are run at spatial resolutions too coarse for assessing effects this localized. Local scale projections can be obtained using statistical downscaling, a technique which uses historical climate observations to learn a low-resolution to high-resolution mapping. The spatio-temporal nature of the climate system motivates the adaptation of super-resolution image processing techniques to statistical downscaling. In our work, we present DeepSD, a generalized stacked super resolution convolutional neural network (SRCNN) framework with multi-scale input channels for statistical downscaling of climate variables. A comparison of DeepSD to four state-of-the-art methods downscaling daily precipitation from 1 degree (~100km) to 1/8 degrees (~12.5km) over the Continental United States. Furthermore, a framework using the NASA Earth Exchange (NEX) platform is discussed for downscaling more than 20 ESM models with multiple emission scenarios.

     
    more » « less
  2. Abstract

    The decline in snowpack across the western United States is one of the most pressing threats posed by climate change to regional economies and livelihoods. Earth system models are important tools for exploring past and future snowpack variability, yet their coarse spatial resolutions distort local topography and bias spatial patterns of accumulation and ablation. Here, we explore pattern-based statistical downscaling for spatially-continuous interannual snowpack estimates. We find that a few leading patterns capture the majority of snowpack variability across the western US in observations, reanalyses, and free-running simulations. Pattern-based downscaling methods yield accurate, high resolution maps that correct mean and variance biases in domain-wide simulated snowpack. Methods that use large-scale patterns as both predictors and predictands perform better than those that do not and all are superior to an interpolation-based “delta change” approach. These findings suggest that pattern-based methods are appropriate for downscaling interannual snowpack variability and that using physically meaningful large-scale patterns is more important than the details of any particular downscaling method.

     
    more » « less
  3. Abstract

    The northeastern United States (NEUS) is a densely populated region with a number of major cities along the climatological storm track. Despite its economic and social importance, as well as the area’s vulnerability to flooding, there is significant uncertainty around future trends in extreme precipitation over the region. Here, we undertake a regional study of the projected changes in extreme precipitation over the NEUS through the end of the twenty-first century using an ensemble of high-resolution, dynamically downscaled simulations from the North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) project. We find that extreme precipitation increases throughout the region, with the largest changes in coastal regions and smaller changes inland. These increases are seen throughout the year, although the smallest changes in extreme precipitation are seen in the summer, in contrast to earlier studies. The frequency of heavy precipitation also increases such that there are relatively fewer days with moderate precipitation and relatively more days with either no or strong precipitation. Averaged over the region, extreme precipitation increases by +3%–5% °C−1of local warming, with the largest fractional increases in southern and inland regions and occurring during the winter and spring seasons. This is lower than the +7% °C−1rate expected from thermodynamic considerations alone and suggests that dynamical changes damp the increases in extreme precipitation. These changes are qualitatively robust across ensemble members, although there is notable intermodel spread associated with models’ climate sensitivity and with changes in mean precipitation. Together, the NA-CORDEX simulations suggest that this densely populated region may require significant adaptation strategies to cope with the increase in extreme precipitation expected at the end of the next century.

    Significance Statement

    Observations show that the northeastern United States has already experienced increases in extreme precipitation, and prior modeling studies suggest that this trend is expected to continue through the end of the century. Using high-resolution climate model simulations, we find that coastal regions will experience large increases in extreme precipitation (+6.0–7.5 mm day−1), although there is significant intermodel spread in the trends’ spatial distribution and in their seasonality. Regionally averaged, extreme precipitation will increase at a rate of ∼2% decade−1. Our results also suggest that the frequency of extreme precipitation will increase, with the strongest storms doubling in frequency per degree of warming. These results, taken with earlier studies, provide guidance to aid in resiliency preparation and planning by regional stakeholders.

     
    more » « less
  4. Abstract

    Heat waves impact a wide array of human activities, including health, cooling energy demand, and infrastructure. Cities amplify many of these impacts by concentrating large populations and critical infrastructure in relatively small areas. In addition, heat waves are expected to become longer, more intense, and more frequent in North America. Here, we evaluate combined climate and urban surface impacts on localized heat wave metrics throughout the 21st century across two emissions scenarios (RCP4.5 and RCP8.5) for New York City (NYC), which houses the largest urban population in the United States. We account for local biases due to urban surfaces via bias correcting with observed records and urbanized 1‐km resolution dynamical downscaling simulations across selected time periods (2045–2049 and 2095–2099). Analysis of statistically downscaled global model output shows underestimation of uncorrected summer daily maximum temperatures, leading to lower heat wave intensity and duration projections. High‐resolution dynamical downscaling simulations reveal strong dependency of changes in event duration and intensity on geographical location and urban density. Event intensity changes are expected to be highest closer to the coast, where afternoon sea‐breezes have traditionally mitigated summer high temperatures. Meanwhile, event duration anomaly is largest over Manhattan, where the urban canopy is denser and taller.

     
    more » « less
  5. Abstract

    The associated uncertainties of future climate projections are one of the biggest obstacles to overcome in studies exploring the potential regional impacts of future climate shifts. In remote and climatically complex regions, the limited number of available downscaled projections may not provide an accurate representation of the underlying uncertainty in future climate or the possible range of potential scenarios. Consequently, global downscaled projections are now some of the most widely used climate datasets in the world. However, they are rarely examined for representativeness of local climate or the plausibility of their projected changes. Here we explore the utility of two such global datasets (CHELSA and WorldClim2) in providing plausible future climate scenarios for regional climate change impact studies. Our analysis was based on three steps: (1) standardizing a baseline period to compare available global downscaled projections with regional observation-based datasets and regional downscaled datasets; (2) bias correcting projections using a single observation-based baseline; and (3) having controlled differences in baselines between datasets, exploring the patterns and magnitude of projected climate shifts from these datasets to determine their plausibility as future climate scenarios, using Hawaiʻi as an example region. Focusing on mean annual temperature and precipitation, we show projected climate shifts from these commonly used global datasets not only may vary significantly from one another but may also fall well outside the range of future scenarios derived from regional downscaling efforts. As species distribution models are commonly created from these datasets, we further illustrate how a substantial portion of variability in future species distribution shifts can arise from the choice of global dataset used. Hence, projected shifts between baseline and future scenarios from these global downscaled projections warrant careful evaluation before use in climate impact studies, something rarely done in the existing literature.

     
    more » « less