Abstract AimThe Neotropics constitute the most biodiverse region of the world, yet its patterns of diversification and speciation differ among Neotropical areas and are not equally well understood. Particularly, avian evolutionary processes are understudied in the open habitats of temperate South America, where the role of glacial cycles is not clear. We analysed the evolutionary history of a Neotropical widespread bird species as a case study to evaluate its continental‐scale patterns and processes of diversification, with a focus on Patagonia. LocationOpen habitats of the Neotropics. TaxonVanellus chilensis(Aves, Charadriiformes). MethodsWe obtained reduced representation genomic and mitochondrial data from the four subspecies ofV. chilensisto perform a phylogenetic/phylogeographical analysis and study the evolutionary history of the species. We complemented these analyses with the study of vocalizations, a reproductive signal in birds. ResultsThe initial diversification event withinV. chilensis, approximately 600,000 years ago, split a Patagonian lineage from one containing individuals from the rest of the Neotropics. We found considerable gene flow between these two lineages and a contact zone in northern Patagonia, and showed that genomic admixture extends to northwestern Argentina. Shallower divergence was detected between the two non‐Patagonian subspecies, which are separated by the Amazon River. Vocalizations were significantly different between the two main lineages and were intermediate in their temporal and frequency characteristics in the contact zone. Main ConclusionsPatagonian populations ofV. chilensisare clearly differentiated from those of the rest of the Neotropics, possibly as a consequence of Pleistocene glaciations. A secondary contact zone in northern Patagonia with extensive gene flow among lineages appears to be the consequence of post‐glacial, northward expansion of the Patagonian populations. Future analyses focused on the dynamics of the contact zone will allow us to establish whether the species continues to diverge or is homogenizing.
more »
« less
Excavating ghost footprints and tangled trees from modern genomes
Due to pervasive gene flow and admixture, simple bifurcating trees often do not provide an accurate representation of relationships among diverging lineages, but limited resolution in the available genomic data and the spatial distribution of samples has hindered detailed insights regarding the evolutionary and demographic history of many species and populations. In this issue ofMolecular Ecology, Foote et al. (2019) combine a powerful sampling design with novel analytical methods adopted from human genetics to describe previously unrecognized patterns of recurrent vicariance and admixture among lineages in the globally distributed killer whale (Orcinus orca). Based on sequence data from modern samples alone, they discover clear signatures of ancient admixture with a now extinct “ghost” lineage, providing one of the first accounts of archaic introgression in a nonhominid species. Coupling a cost‐effective sequencing strategy with novel analytical approaches, their paper provides a roadmap for advancing inference of evolutionary history in other nonmodel species, promising exciting times ahead for our field.
more »
« less
- Award ID(s):
- 1756316
- PAR ID:
- 10460603
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 28
- Issue:
- 14
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 3287-3290
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Inferring evolutionary relationships among recently diverged lineages is necessary to understand how isolating barriers produce independent lineages. Here, we investigate the phylogenetic relationships between three incompletely isolated and closely related mushroom‐feedingDrosophilaspecies. These species form theDrosophila subquinariaspecies complex and consist of one Eurasian species (D. transversa) and two widespread North American species (D. subquinariaandD. recens) that are sympatric in central Canada. Although patterns of pre‐ and post‐mating isolation among these species are well characterized, previous work on their phylogenetic relationships is limited and conflicting. In this study, we generated a multi‐locus data set of 29 loci from across the genome sequenced in a population sample from each species, and then, we inferred species relationships and patterns of introgression. We find strong statistical support thatD. subquinariais paraphyletic, showing that samples from the geographic region sympatric withD. recensare most closely related toD. recens, whereas samples from the geographic region allopatric withD. recensare most closely related toD. transversa. We present several lines of evidence that both incomplete lineage sorting and gene flow are causing phylogenetic discordance. We suggest that ongoing gene flow primarily fromD. recensintoD. subquinariain the sympatric part of their ranges causes phylogenetic uncertainty in the evolutionary history of these species. Our results highlight how population genetic data can be used to disentangle the sources of phylogenetic discordance among closely related species.more » « less
-
Parsch, John (Ed.)Abstract Genetic introgression not only provides material for adaptive evolution but also confounds our understanding of evolutionary history. This is particularly true for canids, a species complex in which genome sequencing and analysis has revealed a complex history of admixture and introgression. Here, we sequence 19 new whole genomes from high-altitude Tibetan and Himalayan wolves and dogs and combine these into a larger data set of 166 whole canid genomes. Using these data, we explore the evolutionary history and adaptation of these and other canid lineages. We find that Tibetan and Himalayan wolves are closely related to each other, and that ∼39% of their nuclear genome is derived from an as-yet-unrecognized wolf-like lineage that is deeply diverged from living Holarctic wolves and dogs. The EPAS1 haplotype, which is present at high frequencies in Tibetan dog breeds and wolves and confers an adaptive advantage to animals living at high altitudes, was probably derived from this ancient lineage. Our study underscores the complexity of canid evolution and demonstrates how admixture and introgression can shape the evolutionary trajectories of species.more » « less
-
Population genomics of divergence among extreme and intermediate color forms in a polymorphic insectAbstract Geographic variation in insect coloration is among the most intriguing examples of rapid phenotypic evolution and provides opportunities to study mechanisms of phenotypic change and diversification in closely related lineages. The bumble beeBombus bifariuscomprises two geographically disparate color groups characterized by red‐banded and black‐banded abdominal pigmentation, but with a range of spatially and phenotypically intermediate populations across western North America. Microsatellite analyses have revealed thatB. bifariusin the USA are structured into two major groups concordant with geography and color pattern, but also suggest ongoing gene flow among regional populations. In this study, we better resolve the relationships among major color groups to better understand evolutionary mechanisms promoting and maintaining such polymorphism. We analyze >90,000 and >25,000 single‐nucleotide polymorphisms derived from transcriptome (RNAseq) and double digest restriction site associatedDNAsequencing (ddRAD), respectively, in representative samples from spatial and color pattern extremes inB. bifariusas well as phenotypic and geographic intermediates. Both ddRADandRNAseq data illustrate substantial genome‐wide differentiation of the red‐banded (eastern) color form from both black‐banded (western) and intermediate (central) phenotypes and negligible differentiation among the latter populations, with no obvious admixture among bees from the two major lineages. Results thus indicate much stronger background differentiation amongB. bifariuslineages than expected, highlighting potential challenges for revealing loci underlying color polymorphism from population genetic data alone. These findings will have significance for resolving taxonomic confusion in this species and in future efforts to investigate color‐pattern evolution inB. bifariusand other polymorphic bumble bee species.more » « less
-
Abstract Genomic‐scale datasets, sophisticated analytical techniques, and conceptual advances have disproportionately failed to resolve species boundaries in some groups relative to others. To understand the processes that underlie taxonomic intractability, we dissect the speciation history of an Australian lizard clade that arguably represents a “worst‐case” scenario for species delimitation within vertebrates: theCtenotus inornatusspecies group, a clade beset with decoupled genetic and phenotypic breaks, uncertain geographic ranges, and parallelism in purportedly diagnostic morphological characters. We sampled hundreds of localities to generate a genomic perspective on population divergence, structure, and admixture. Our results revealed rampant paraphyly of nominate taxa in the group, with lineages that are either morphologically cryptic or polytypic. Isolation‐by‐distance patterns reflect spatially continuous differentiation among certain pairs of putative species, yet genetic and geographic distances are decoupled in other pairs. Comparisons of mitochondrial and nuclear gene trees, tests of nuclear introgression, and historical demographic modelling identified gene flow between divergent candidate species. Levels of admixture are decoupled from phylogenetic relatedness; gene flow is often higher between sympatric species than between parapatric populations of the same species. Such idiosyncratic patterns of introgression contribute to species boundaries that are fuzzy while also varying in fuzziness. Our results suggest that “taxonomic disaster zones” like theC. inornatusspecies group result from spatial variation in the porosity of species boundaries and the resulting patterns of genetic and phenotypic variation. This study raises questions about the origin and persistence of hybridizing species and highlights the unique insights provided by taxa that have long eluded straightforward taxonomic categorization.more » « less
An official website of the United States government
