skip to main content


Title: Control of Convection in High‐Resolution Simulations of Tropical Cyclogenesis
Abstract

Three idealized high‐resolution simulations of tropical storm formation from a weak vortex are analyzed. The three simulations include a case using warm rain microphysics, a similar case in which surface friction is omitted, and a case in which ice microphysics is used. The goal is to understand the mechanisms controlling the intensity and distribution of convection in the formation process in each of these cases. Simulations of convection in weak temperature gradient convective models show that a combination of low to middle tropospheric moist convective instability, the saturation fraction or column relative humidity, and the surface moist entropy flux explain a high percentage of the variance in precipitation and lower tropospheric vertical mass flux. Tropical cyclones differ from other convective environments in that intense frictional convergence occurs in the boundary layer. Adding a measure of convective inhibition to account for this process enables the lower tropospheric mass flux to be predicted even in the core regions of the simulated tropical cyclones. These results are pertinent to the development of more accurate convective parameterizations for large‐scale models.

 
more » « less
NSF-PAR ID:
10460637
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
11
Issue:
6
ISSN:
1942-2466
Page Range / eLocation ID:
p. 1582-1599
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A cloud-resolving model is used to examine the intensification of tilted tropical cyclones from depression to hurricane strength over relatively cool and warm oceans under idealized conditions where environmental vertical wind shear has become minimal. Variation of the SST does not substantially change the time-averaged relationship between tilt and the radial length scale of the inner core, or between tilt and the azimuthal distribution of precipitation during the hurricane formation period (HFP). By contrast, for systems having similar structural parameters, the HFP lengthens superlinearly in association with a decline of the precipitation rate as the SST decreases from 30° to 26°C. In many simulations, hurricane formation progresses from a phase of slow or neutral intensification to fast spinup. The transition to fast spinup occurs after the magnitudes of tilt and convective asymmetry drop below certain SST-dependent levels following an alignment process explained in an earlier paper. For reasons examined herein, the alignment coincides with enhancements of lower–middle-tropospheric relative humidity and lower-tropospheric CAPE inward of the radius of maximum surface wind speedrm. Such moist-thermodynamic modifications appear to facilitate initiation of the faster mode of intensification, which involves contraction ofrmand the characteristic radius of deep convection. The mean transitional values of the tilt magnitude and lower–middle-tropospheric relative humidity for SSTs of 28°–30°C are respectively higher and lower than their counterparts at 26°C. Greater magnitudes of the surface enthalpy flux and core deep-layer CAPE found at the higher SSTs plausibly compensate for less complete alignment and core humidification at the transition time.

     
    more » « less
  2. Abstract

    High‐resolution modeling reveals a tendency for deep convection to spontaneously self‐aggregate from radiative‐convective equilibrium. Self‐aggregated convection takes different forms in nonrotating versus rotating environments, including tropical cyclones (TCs) in the latter. This suggests that self‐aggregation (SA), and the relative roles of the mechanisms that cause it, may undergo a gradual regime shift as the ambient rotation changes. We address this hypothesis using 31 cloud‐resolving model simulations onf‐planes corresponding to latitudes between 0.1° and 20°, spanning a range of weakly rotating environments largely unexplored in prior literature. Simulations are classified into three groups. The first (low‐f, 0.1°–5°) is characterized by the growth of several dry patches. Surface enthalpy flux feedbacks dominate in this initial growth phase, followed by radiative (primarily cloud longwave) effects. Eventually, convection takes the form of either a nonrotating band or a quasi‐circular cluster. In contrast, the 9°–20° (high‐f) group dries less rapidly in early stages, though enhanced surface flux effects form a moist anomaly that undergoes TC genesis. The TC then acts to dry the remainder of the domain. Finally, a set of 6°–8° (medium‐f) simulations fails to fully self‐aggregate, producing convection across most of the domain through the full 100‐day simulation. The combination of relatively weak diabatic feedbacks and a negative advective feedback prevents SA from completing in this group. The advective feedback becomes more negative with increasing rotation, but high‐fsimulations compensate by having sufficiently strong surface flux feedbacks to support TC genesis.

     
    more » « less
  3. Abstract

    A framework is introduced to investigate the indirect effect of aerosol loading on tropical deep convection using three-dimensional limited-domain idealized cloud-system-resolving model simulations coupled with large-scale dynamics over fixed sea surface temperature. The large-scale circulation is parameterized using the spectral weak temperature gradient (WTG) approximation that utilizes the dominant balance between adiabatic cooling and diabatic heating in the tropics. The aerosol loading effect is examined by varying the number of cloud condensation nuclei (CCN) available to form cloud droplets in the two-moment bulk microphysics scheme over a wide range of environments from 30 to 5000 cm−3. The radiative heating is held at a constant prescribed rate in order to isolate the microphysical effects. Analyses are performed over the period after equilibrium is achieved between convection and the large-scale environment. Mean precipitation is found to decrease modestly and monotonically when the aerosol number concentration increases as convection gets weaker, despite the increase in cloud liquid water in the warm-rain region and ice crystals aloft. This reduction is traced down to the reduction in surface enthalpy fluxes as an energy source to the atmospheric column induced by the coupling of the large-scale motion, though the gross moist stability remains constant. Increasing CCN concentration leads to 1) a cooler free troposphere because of a reduction in the diabatic heating and 2) a warmer boundary layer because of suppressed evaporative cooling. This dipole temperature structure is associated with anomalously descending large-scale vertical motion above the boundary layer and ascending motion at lower levels. Sensitivity tests suggest that changes in convection and mean precipitation are unlikely to be caused by the impact of aerosols on cloud droplets and microphysical properties but rather by accounting for the feedback from convective adjustment with the large-scale dynamics. Furthermore, a simple scaling argument is derived based on the vertically integrated moist static energy budget, which enables estimation of changes in precipitation given known changes in surfaces enthalpy fluxes and the constant gross moist stability. The impact on cloud hydrometeors and microphysical properties is also examined, and it is consistent with the macrophysical picture.

     
    more » « less
  4. Abstract

    Data from recent field programs studying deep convection may be useful in constraining cumulus parameterizations. To this end, gridded dropsonde analyses are made using data from the OTREC (Organization of Tropical East Pacific Convection) and PREDICT (PreDepression Investigation of Cloud‐Systems in the Tropics) projects to characterize the mesoscale properties of tropical oceanic convection in terms of selected thermodynamic parameters computable from the explicit grids of large‐scale models. In particular, saturation fraction, lower tropospheric moist convective instability, and convective inhibition appear to govern column‐integrated moisture convergence, while sea surface temperature is related to the top‐heaviness of mass flux profiles and the integrated entropy divergence. Local (as opposed to global) surface heat and moisture fluxes and convective available potential energy correlate weakly with these quantities. Recommendations to improve cumulus parameterizations are enumerated.

     
    more » « less
  5. Abstract

    Storms operated by moist convection and the condensation of CH4or H2S have been observed on Uranus and Neptune. However, the mechanism of cloud formation, thermal structure, and mixing efficiency of ice giant weather layers remains unclear. In this paper, we show that moist convection is limited by heat transport on giant planets, especially on ice giants where planetary heat flux is weak. Latent heat associated with condensation and evaporation can efficiently bring heat across the weather layer through precipitations. This effect was usually neglected in previous studies without a complete hydrological cycle. We first derive analytical theories and show that the upper limit of cloud density is determined by the planetary heat flux and microphysics of clouds but is independent of the atmospheric composition. The eddy diffusivity of moisture depends on the planetary heat fluxes, atmospheric composition, and surface gravity but is not directly related to cloud microphysics. We then conduct convection- and cloud-resolving simulations with SNAP to validate our analytical theory. The simulated cloud density and eddy diffusivity are smaller than the results acquired from the equilibrium cloud condensation model and mixing length theory by several orders of magnitude but consistent with our analytical solutions. Meanwhile, the mass-loading effect of CH4and H2S leads to superadiabatic and stable weather layers. Our simulations produced three cloud layers that are qualitatively similar to recent observations. This study has important implications for cloud formation and eddy mixing in giant planet atmospheres in general and observations for future space missions and ground-based telescopes.

     
    more » « less