GeoAI, or geospatial artificial intelligence, has become a trending topic and the frontier for spatial analytics in Geography. Although much progress has been made in exploring the integration of AI and Geography, there is yet no clear definition of GeoAI, its scope of research, or a broad discussion of how it enables new ways of problem solving across social and environmental sciences. This paper provides a comprehensive overview of GeoAI research used in large-scale image analysis, and its methodological foundation, most recent progress in geospatial applications, and comparative advantages over traditional methods. We organize this review of GeoAI research according to different kinds of image or structured data, including satellite and drone images, street views, and geo-scientific data, as well as their applications in a variety of image analysis and machine vision tasks. While different applications tend to use diverse types of data and models, we summarized six major strengths of GeoAI research, including (1) enablement of large-scale analytics; (2) automation; (3) high accuracy; (4) sensitivity in detecting subtle changes; (5) tolerance of noise in data; and (6) rapid technological advancement. As GeoAI remains a rapidly evolving field, we also describe current knowledge gaps and discuss future research directions.
more »
« less
Thinking Geographically about AI Sustainability
Abstract. Driven by foundation models, recent progress in AI and machine learning has reached unprecedented complexity. For instance, the GPT-3 language model consists of 175 billion parameters and a training-data size of 570 GB. While it has achieved remarkable performance in generating text that is difficult to distinguish from human-authored content, a single training of the model is estimated to produce over 550 metric tons of CO2 emissions. Likewise, we see advances in GeoAI research improving large-scale prediction tasks like satellite image classification and global climate modeling, to name but a couple. While these models have not yet reached comparable complexity and emissions levels, spatio-temporal models differ from language and image-generation models in several ways that make it necessary to (re)train them more often, with potentially large implications for sustainability. While recent work in the machine learning community has started calling for greener and more energy-efficient AI alongside improvements in model accuracy, this trend has not yet reached the GeoAI community at large. In this work, we bring this issue to not only the attention of the GeoAI community but also present ethical considerations from a geographic perspective that are missing from the broader, ongoing AI-sustainability discussion. To start this discussion, we propose a framework to evaluate models from several sustainability-related angles, including energy efficiency, carbon intensity, transparency, and social implications. We encourage future AI/GeoAI work to acknowledge its environmental impact as a step towards a more resource-conscious society. Similar to the current push for reproducibility, future publications should also report the energy/carbon costs of improvements over prior work.
more »
« less
- Award ID(s):
- 2033521
- PAR ID:
- 10460964
- Date Published:
- Journal Name:
- AGILE: GIScience Series
- Volume:
- 4
- ISSN:
- 2700-8150
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Citizen science and artificial intelligence (AI) complement each other by harnessing the strengths of both human and machine capabilities. Citizen science generates terabytes of raw numerical, text, and image data, the analysis of which requires automated techniques to process in an efficient manner. Conversely, AI computer vision technology can require tens of thousands of images during the training process, and citizen science projects are well suited to provide large libraries of data. Herein, we describe how AI tools are being applied across the GLOBE Observer citizen science data ecosystem, where image recognition algorithms are supporting data ingest processes, protecting user privacy and improving data fidelity. GLOBE citizen science data has been used to develop automated data classification routines that enable information discovery of mosquito larvae and land cover labels. These advances position GLOBE citizen scientist data for discovery and use in environmental and health research, as well as by machine learning scientists working in the general field of GeoAI.more » « less
-
Abstract This study examines the role of human dynamics within Geospatial Artificial Intelligence (GeoAI), highlighting its potential to reshape the geospatial research field. GeoAI, emerging from the confluence of geospatial technologies and artificial intelligence, is revolutionizing our comprehension of human-environmental interactions. This revolution is powered by large-scale models trained on extensive geospatial datasets, employing deep learning to analyze complex geospatial phenomena. Our findings highlight the synergy between human intelligence and AI. Particularly, the humans-as-sensors approach enhances the accuracy of geospatial data analysis by leveraging human-centric AI, while the evolving GeoAI landscape underscores the significance of human–robot interaction and the customization of GeoAI services to meet individual needs. The concept of mixed-experts GeoAI, integrating human expertise with AI, plays a crucial role in conducting sophisticated data analyses, ensuring that human insights remain at the forefront of this field. This paper also tackles ethical issues such as privacy and bias, which are pivotal for the ethical application of GeoAI. By exploring these human-centric considerations, we discuss how the collaborations between humans and AI transform the future of work at the human-technology frontier and redefine the role of AI in geospatial contexts.more » « less
-
Abstract The recent proliferation of large language models (LLMs) has led to divergent narratives about their environmental impacts. Some studies highlight the substantial carbon footprint of training and using LLMs, while others argue that LLMs can lead to more sustainable alternatives to current practices. We reconcile these narratives by presenting a comparative assessment of the environmental impact of LLMs vs. human labor, examining their relative efficiency across energy consumption, carbon emissions, water usage, and cost. Our findings reveal that, while LLMs have substantial environmental impacts, their relative impacts can be dramatically lower than human labor in the U.S. for the same output, with human-to-LLM ratios ranging from 40 to 150 for a typical LLM (Llama-3-70B) and from 1200 to 4400 for a lightweight LLM (Gemma-2B-it). While the human-to-LLM ratios are smaller with regard to human labor in India, these ratios are still between 3.4 and 16 for a typical LLM and between 130 and 1100 for a lightweight LLM. Despite the potential benefit of switching from humans to LLMs, economic factors may cause widespread adoption to lead to a new combination of human and LLM-driven work, rather than a simple substitution. Moreover, the growing size of LLMs may substantially increase their energy consumption and lower the human-to-LLM ratios, highlighting the need for further research to ensure the sustainability and efficiency of LLMs.more » « less
-
Abstract Purpose of ReviewArtificial intelligence (AI) is disrupting science and discovery across disciplines, offering new modes of inquiry that are changing how questions are asked and answered and upsetting established norms. In this paper, we review the state of the art of AI in landscape ecology and offer six areas of opportunity for landscape ecologists to capitalize on AI tools moving forward. These areas include geospatial AI (GeoAI), geometric AI, Explainable AI (xAI), generative AI (GenAI), Natural Language Processing (NLP), and robotics. Recent FindingsLandscape ecology has a long history of using AI, notably machine learning methods for image classification tasks, agent-based modeling, and species distribution modeling but also knowledge representation and automated reasoning for landscape generation and spatial planning. Methods have become more diverse and complex in recent years, with a new generation of AI-based tools rapidly emerging. These new tools have potential to improve how landscape ecologists map, measure, and model landscape patterns and processes as well as improve the explainability of model outputs. SummaryThere are many untapped opportunities for landscape ecologists to leverage emerging AI-based tools in research and practice including generating virtual landscapes for simulating processes such as wildfires and leveraging natural language processing to generate new insights from text data. Regardless of the application, researchers using AI tools must also consider the ethical implications of data and algorithmic biases and critically assess how these methods can be used responsibly.more » « less
An official website of the United States government

