skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Epidemic modeling with heterogeneity and social diffusion
Abstract We propose and analyze a family of epidemiological models that extend the classic Susceptible-Infectious-Recovered/Removed (SIR)-like framework to account for dynamic heterogeneity in infection risk. The family of models takes the form of a system of reaction–diffusion equations given populations structured by heterogeneous susceptibility to infection. These models describe the evolution of population-level macroscopic quantities S ,  I ,  R as in the classical case coupled with a microscopic variable f , giving the distribution of individual behavior in terms of exposure to contagion in the population of susceptibles. The reaction terms represent the impact of sculpting the distribution of susceptibles by the infection process. The diffusion and drift terms that appear in a Fokker–Planck type equation represent the impact of behavior change both during and in the absence of an epidemic. We first study the mathematical foundations of this system of reaction–diffusion equations and prove a number of its properties. In particular, we show that the system will converge back to the unique equilibrium distribution after an epidemic outbreak. We then derive a simpler system by seeking self-similar solutions to the reaction–diffusion equations in the case of Gaussian profiles. Notably, these self-similar solutions lead to a system of ordinary differential equations including classic SIR-like compartments and a new feature: the average risk level in the remaining susceptible population. We show that the simplified system exhibits a rich dynamical structure during epidemics, including plateaus, shoulders, rebounds and oscillations. Finally, we offer perspectives and caveats on ways that this family of models can help interpret the non-canonical dynamics of emerging infectious diseases, including COVID-19.  more » « less
Award ID(s):
1806833
PAR ID:
10461025
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Mathematical Biology
Volume:
86
Issue:
4
ISSN:
0303-6812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Mathematical models of the dynamics of infectious disease transmission are used to forecast epidemics and assess mitigation strategies. In this article, we highlight the analogy between the dynamics of disease transmission and chemical reaction kinetics while providing an exposition on the classic Susceptible–Infectious–Removed (SIR) epidemic model. Particularly, the SIR model resembles a dynamic model of a batch reactor carrying out an autocatalytic reaction with catalyst deactivation. This analogy between disease transmission and chemical reaction enables the exchange of ideas between epidemic and chemical kinetic modeling communities. 
    more » « less
  2. null (Ed.)
    Standard epidemiological models for COVID-19 employ variants of compartment (SIR or susceptible–infectious–recovered) models at local scales, implicitly assuming spatially uniform local mixing. Here, we examine the effect of employing more geographically detailed diffusion models based on known spatial features of interpersonal networks, most particularly the presence of a long-tailed but monotone decline in the probability of interaction with distance, on disease diffusion. Based on simulations of unrestricted COVID-19 diffusion in 19 US cities, we conclude that heterogeneity in population distribution can have large impacts on local pandemic timing and severity, even when aggregate behavior at larger scales mirrors a classic SIR-like pattern. Impacts observed include severe local outbreaks with long lag time relative to the aggregate infection curve, and the presence of numerous areas whose disease trajectories correlate poorly with those of neighboring areas. A simple catchment model for hospital demand illustrates potential implications for health care utilization, with substantial disparities in the timing and extremity of impacts even without distancing interventions. Likewise, analysis of social exposure to others who are morbid or deceased shows considerable variation in how the epidemic can appear to individuals on the ground, potentially affecting risk assessment and compliance with mitigation measures. These results demonstrate the potential for spatial network structure to generate highly nonuniform diffusion behavior even at the scale of cities, and suggest the importance of incorporating such structure when designing models to inform health care planning, predict community outcomes, or identify potential disparities. 
    more » « less
  3. Abstract We prove that it is possible to obtain the exact closure of SIR pairwise epidemic equations on a configuration model network if and only if the degree distribution follows a Poisson, binomial, or negative binomial distribution. The proof relies on establishing the equivalence, for these specific degree distributions, between the closed pairwise model and a dynamical survival analysis (DSA) model that was previously shown to be exact. Specifically, we demonstrate that the DSA model is equivalent to the well-known edge-based Volz model. Using this result, we also provide reductions of the closed pairwise and Volz models to a single equation that involves only susceptibles. This equation has a useful statistical interpretation in terms of times to infection. We provide some numerical examples to illustrate our results. 
    more » « less
  4. The spread of an infectious disease depends on intrinsic properties of the disease as well as the connectivity and actions of the population. This study investigates the dynamics of an SIR type model which accounts for human tendency to avoid infection while also maintaining preexisting, interpersonal relationships. Specifically, we use a network model in which individuals probabilistically deactivate connections to infected individuals and later reconnect to the same individuals upon recovery. To analyze this network model, a mean field approximation consisting of a system of fourteen ordinary differential equations for the number of nodes and edges is developed. This system of equations is closed using a moment closure approximation for the number of triple links. By analyzing the differential equations, it is shown that, in addition to force of infection and recovery rate, the probability of deactivating edges and the average node degree of the underlying network determine if an epidemic occurs. 
    more » « less
  5. We explore the effects of cross-diffusion dynamics in epidemiological models. Using reaction–diffusion models of infectious disease, we explicitly consider situations where an individual in a category will move according to the concentration of individuals in other categories. Namely, we model susceptible individuals moving away from infected and infectious individuals. Here, we show that including these cross-diffusion dynamics results in a delay in the onset of an epidemic and an increase in the total number of infectious individuals. This representation provides more realistic spatiotemporal dynamics of the disease classes in an Erlang SEIR model and allows us to study how spatial mobility, due to social behavior, can affect the spread of an epidemic. We found that tailored control measures, such as targeted testing, contact tracing, and isolation of infected individuals, can be more effective in mitigating the spread of infectious diseases while minimizing the negative impact on society and the economy. 
    more » « less