Although rarely experimentally tested, biotic interactions have long been hypothesised to limit low‐elevation range boundaries of species. We tested the effects of herbivory on three alpine‐restricted plant species by transplanting plants below (novel), at the edge (limit), or in the centre (core) of their current elevational range and factorially fencing‐out above‐ and belowground mammals. Herbivore damage was greater in range limit and novel habitats than in range cores. Exclosures increased plant biomass and reproduction more in novel habitats than in range cores, suggesting demographic costs of novel interactions with herbivores. We then used demographic models to project population growth rates, which increased 5–20% more under herbivore exclosure at range limit and novel sites than in core habitats. Our results identify mammalian herbivores as key drivers of the low‐elevation range limits of alpine plants and indicate that upward encroachment of herbivores could trigger local extinctions by depressing plant population growth.
Shifts in species geographic distributions in response to climate change have spurred numerous studies to determine which abiotic (e.g. climatic) and, less commonly, biotic (e.g. competitive) processes determine range limits. However, the impact of disturbances on range limits and their interactions with climatic and biotic effects is not well understood, despite their potential to alter competitive relationships between species or override climatic effects. Disturbance might have differential effects at contrasting range limits, based on Darwin's theory that biotic interactions set abiotically benign range limits and abiotic factors set abiotically stressful range limits. We predicted that plants at lower elevation (abiotically benign) range limits experience a net positive effect of disturbance, whereas those at higher elevation (abiotically stressful) range limits experience a net neutral effect. We examined plant populations along elevational gradients in the Colorado Rocky Mountains, in order to quantify the effects of human trampling disturbance at lower and upper elevational range limits of the common alpine cushion plants Our results are consistent with Darwin's theory. A disturbance‐mediated reduction of competitive effects increases the performance of cushion plants at lower elevations, suggesting a range limit set by biotic factors. At higher elevations, where biotic interactions are minimal, disturbance has neutral or negative effects on cushion plants.
- Award ID(s):
- 1753954
- NSF-PAR ID:
- 10461193
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Applied Ecology
- Volume:
- 56
- Issue:
- 6
- ISSN:
- 0021-8901
- Page Range / eLocation ID:
- p. 1389-1399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Summary Plant associated mutualists can mediate invasion success by affecting the ecological niche of nonnative plant species. Anthropogenic disturbance is also key in facilitating invasion success through changes in biotic and abiotic conditions, but the combined effect of these two factors in natural environments is understudied.
To better understand this interaction, we investigated how disturbance and its interaction with mycorrhizas could impact range dynamics of nonnative plant species in the mountains of Norway. Therefore, we studied the root colonisation and community composition of arbuscular mycorrhizal (AM) fungi in disturbed vs undisturbed plots along mountain roads.
We found that roadside disturbance strongly increases fungal diversity and richness while also promoting AM fungal root colonisation in an otherwise ecto‐mycorrhiza and ericoid‐mycorrhiza dominated environment. Surprisingly, AM fungi associating with nonnative plant species were present across the whole elevation gradient, even above the highest elevational limit of nonnative plants, indicating that mycorrhizal fungi are not currently limiting the upward movement of nonnative plants.
We conclude that roadside disturbance has a positive effect on AM fungal colonisation and richness, possibly supporting the spread of nonnative plants, but that there is no absolute limitation of belowground mutualists, even at high elevation.
-
Abstract Questions Shrub expansion into alpine ecosystems worldwide raises important questions regarding the influence of shrub encroachment on alpine species diversity. The stress gradient hypothesis (
SGH ) predicts interactions will be competitive when resources are plentiful and the environment is benign, but that facilitative interactions will dominate when conditions are stressful. We asked howArtemisia rothrockii (sagebrush) encroachment in an arid mountain range is affecting alpine plant species there and how the plant community responds to the experimental removal of sagebrush at three sites along an elevational gradient.Location The White Mountains, California,
USA (37°30′N, 118°10′W).Methods A shrub removal experiment was established at three elevations (2,900, 3,100 and 3,750 m) to evaluate how sagebrush interacts with alpine and sub‐alpine plant communities.
Results The study sites experienced a strong drought over the 4 yrs of the experiment and plant cover declined overall. However, in the sagebrush removal treatment, cover of co‐occurring species increased at both the high‐elevation and low‐elevation sites, with no differences observed at the mid‐elevation site.
Conclusions We observed the greatest inhibitory effects of sagebrush at high and low elevations, where plants experience the largest temperature and moisture stress, respectively, and no evidence of facilitation anywhere along the elevational gradient. These results demonstrate that while sagebrush has important influences on herbaceous species composition in the White Mountains, they are inconsistent with the classic predictions of the
SGH . -
Abstract Understanding how abiotic disturbance and biotic interactions determine pollinator and flowering‐plant diversity is critically important given global climate change and widespread pollinator declines. To predict responses of pollinators and flowering‐plant communities to changes in wildfire disturbance, a mechanistic understanding of how these two trophic levels respond to wildfire severity is needed.
We compared site‐to‐site variation in community composition (
β ‐diversity), species richness and abundances of pollinators and flowering plants among landscapes with no recent wildfire (unburned), mixed‐severity wildfire and high‐severity wildfire in three sites across the Northern Rockies Ecoregion, USA. We used variation partitioning to assess the relative contributions of wildfire, other abiotic variables (climate, soils and topography) and biotic associations among plant and pollinator composition to community assembly of both trophic levels.Wildfire disturbance generally increased species richness and total abundance, but decreased
β ‐diversity, of both pollinators and flowering plants. However, reductions inβ ‐diversity from wildfire appeared to result from increased abundances following fires, resulting in higher local species richness of pollinators and flowers in burned than unburned landscapes. After accounting for differences in abundance, standardized effect sizes ofβ ‐diversity were higher in burned than unburned landscapes, suggesting that wildfire enhances non‐random assortment of pollinator and flowering‐plant species among local communities.Wildfire disturbance mediated the relative importance of mutualistic associations to
β ‐diversity of pollinators and flowering plants. The influence of pollinatorβ ‐diversity on flowering‐plantβ ‐diversity increased with wildfire severity, whereas the influence of flowering‐plantβ ‐diversity on pollinatorβ ‐diversity was greater in mixed‐severity than high‐severity wildfire or unburned landscapes. Moreover, biotic associations among pollinator and plant species explained substantial variation inβ ‐diversity of both trophic levels beyond what could be explained by wildfire and all other abiotic and spatial factors combined.Synthesis . Wildfire disturbance and plant–pollinator interactions both strongly influenced the assembly of pollinator and flowering‐plant communities at local and regional scales. However, biotic interactions were generally more important drivers of community assembly in disturbed than undisturbed landscapes. As wildfire regimes continue to change globally, predicting its effects on biodiversity will require a deeper understanding of the ecological processes that mediate biotic interactions among linked trophic levels. -
Abstract Alpine treelines are expected to shift upward due to recent climate change. However, interpretation of changes in montane systems has been problematic because effects of climate change are frequently confounded with those of land use changes. The eastern Himalaya, particularly Langtang National Park, Central Nepal, has been relatively undisturbed for centuries and thus presents an opportunity for studying climate change impacts on alpine treeline uncontaminated by potential confounding factors.
We studied two dominant species,
Abies spectabilis (AS) andRhododendron campanulatum (RC) , above and below the treeline on two mountains. We constructed 13 transects, each spanning up to 400 m in elevation, in which we recorded height and state (dead or alive) of all trees, as well as slope, aspect, canopy density, and measures of anthropogenic and animal disturbance.All size classes of
RC plants had lower mortality above treeline than below it, and youngRC plants (<2 m tall) were at higher density above treeline than below.AS shows little evidence of a position change from the historic treeline, with a sudden extreme drop in density above treeline compared to below. Recruitment, as measured by size–class distribution, was greater above treeline than below for both species butAS is confined to ~25 m above treeline whereasRC is luxuriantly growing up to 200 m above treeline.Synthesis . Evidence suggests that the elevational limits ofRC have shifted upward both because (a) young plants above treeline benefited from facilitation of recruitment by surrounding vegetation, allowing upward expansion of recruitment, and (b) temperature amelioration to mature plants increased adult survival. We predict that the current pure stand ofRC growing above treeline will be colonized byAS that will, in turn, outshade and eventually relegateRC to be a minor component of the community, as is the current situation below the treeline.