skip to main content


Title: Tuning Ultrafast Photoinduced Strain in Ferroelectric‐Based Devices
Abstract

Ferroelectric materials exhibit coupled degrees of freedom and possess a switchable electric polarization coupled to strain, making them good piezoelectrics and enabling numerous devices including nonvolatile memories, actuators, and sensors. Moreover, novel photovoltaic effects are encountered through the interplay of electric polarization with the material optical properties. Consequently, light‐induced deformation in ferroelectrics, or photostriction, combining photovoltaic and converse piezoelectric effects, is under investigation in the quest for multifunctional materials. Using time‐resolved X‐ray diffraction, the first control of ultrafast photoinduced strain is demonstrated through in situ tuning of the polarization state in ferroelectric‐based devices. Both the magnitude and the sign of the photoinduced strain strongly depend on the transient photoinduced change of the internal electric field in the ferroelectric layer, and can be actively engineered to achieve two distinct remanent photostrictive responses. These results provide fundamental insight into light–matter interaction in ferroelectrics and exciting new avenues for materials functionality engineering.

 
more » « less
NSF-PAR ID:
10461209
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
5
Issue:
6
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ferroelectric materials, which exhibit switchable polarization, are potential candidates for photovoltaic applications owing to their intriguing charge carrier separation mechanism associated with polarization and breaking of inversion symmetry. To overcome the low photocurrent of ferroelectrics, extensive efforts have focused on reducing their bandgaps to increase the optical absorption of the solar spectrum and thus the power conversion efficiency. Here, a new avenue of enhancing photovoltaic performance via engineering the polarization across a morphotropic phase boundary (MPB) is reported. Tetragonal compositions in the vicinity of the MPB in a PbTiO3‐Bi(Ni1/2Ti1/2)O3solid solution are shown to generate up to 3.6 kV cm−1photoinduced electric field and 6.2 µA cm−2short‐circuit photocurrent, multiple times higher than its pseudocubic counterpart under the same illumination conditions with excellent polarization retention. This enhancement allows the investigation of the correlation between the polarization switching and photovoltaic switching, which enables a controllable multistate photocurrent. Combined with a bandgap of 2.2 eV, this material exhibits a sizable photoresponse over a broad spectral range. These findings provide a new approach to improve the photovoltaic performance of ferroelectric materials and can expand their potential applications in optoelectronic devices.

     
    more » « less
  2. Abstract

    Metal halide perovskites (MHPs) have attracted broad research interest due to their outstanding optoelectronic performance. This performance has been attributed in part to the presence of polarization in these materials. However, the precise effects of chemical environment and strain condition on the polar states in MHPs have largely been missing. It is revealed for the first time that chemical gradient is directly coupled with strain gradient in CH3NH3PbI3. This strain–chemical gradient induces an electric polarization that can potentially affect charge carrier dynamics. Furthermore, it is unveiled that this electric polarization—unlike ferroelectricity that only exists in noncentrosymmetric materials—can be present in both tetragonal and cubic phases of CH3NH3PbI3. This suggests that the strain–chemical gradient induced polarization is a more convincing explanation of the outstanding photovoltaic properties of MHPs than the hotly debated ferroelectric polarization. Finally, a mechanism of how this polarization impacts photovoltaic action is proposed, which offers insightful advances in the development of MHPs.

     
    more » « less
  3. Abstract

    Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial‐thin‐film‐based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro‐, meso‐, and macroscopic length scales. This review traces the evolution of ferroelectric thin‐film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high‐throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand‐in‐hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices.

     
    more » « less
  4. null (Ed.)
    Recently, the developments of two-dimensional (2D) ferroelectrics and multiferroics have attracted much more attention among researchers. These materials are useful for high-density devices for multifunctional applications such as sensors, transducers, actuators, non-volatile memories, photovoltaic, and FETs. Although several theoretical works have been reported on layered ferroelectrics, experimental work is still lacking in single to few-atomic layers of 2D ferroelectric materials. In this review, we have discussed the recent theoretical as well as experimental progress of 2D ferroelectric and multiferroic materials. The emphasis is given to the development of single to few-atomic layers of 2D ferroelectric materials. In this regard, the recent developments of 2D ferroelectric polarization on vanadium oxyhalides VOX2 (X=I, Br, Cl, and F), distorted phase d1-MoTe2, In2Se3, and SnSe are discussed. d1-MoTe2 shows Curie temperature (TC) above room temperature, while few-layered In2Se3 shows in-plane ferroelectricity and interesting domain wall dynamics in a single atomic layer of SnSe. This follows the discussion of multiferroic materials based on transition metal oxyiodide MOI2 (M=Ti, V, and Cr), double perovskite bilayer, and iron-doped In2Se3. While pristine In2Se3 shows ferroelectric properties, iron-doped In2Se3 shows multiferroicity. Finally, the potential applications of 2D ferroelectrics and multiferroics have been discussed that follow the challenges and opportunities in this field, which can guide the research community to develop next-generation 2D ferroelectric and multiferroic materials with interesting properties. 
    more » « less
  5. Abstract

    The recently discovered ferroelectric nematic (NF) liquid crystals (LCs) with over 0.04 C m−2ferroelectric polarization and 104relative dielectric constants, coupled with sub‐millisecond switching, offer potential applications in high‐power super capacitors and low voltage driven fast electro‐optical devices. This paper presents electrical, optical, and electro‐optical studies of a ferroelectric nematic LC material doped with commercially available chiral dopants. While theNFphase of the undoped LC is only monotropic, the chiralNFphase is enantiotropic, indicating a chirality induced stabilization of the polar nematic order. Compared to undopedNFmaterial, a remarkable improvement of the electro‐optical switching time is demonstrated in the chiral doped materials. The color of the chiral mixtures that exhibit a selective reflection of visible light in the chiralNFphase, can be reversibly tuned by 0.02–0.1 V µm−1 in‐plane electric fields, which are much smaller than typically required in full‐color cholesteric LC displays and do not require complicated driving scheme. The fast switchable reflection color at low fields has potential applications for LC displays without backlight, smart windows, shutters, and e‐papers.

     
    more » « less