skip to main content


Title: Agrobacterium tumefaciens divisome proteins regulate the transition from polar growth to cell division
Summary

The mechanisms that restrict peptidoglycan biosynthesis to the pole during elongation and re‐direct peptidoglycan biosynthesis to mid‐cell during cell division in polar‐growing Alphaproteobacteria are largely unknown. Here, we explore the role of early division proteins ofAgrobacterium tumefaciensincluding three FtsZ homologs, FtsA and FtsW in the transition from polar growth to mid‐cell growth and ultimately cell division. Although two of the three FtsZ homologs localize to mid‐cell, exhibit GTPase activity and form co‐polymers, only one, FtsZAT, is required for cell division. We find that FtsZATis required not only for constriction and cell separation, but also for initiation of peptidoglycan synthesis at mid‐cell and cessation of polar peptidoglycan biosynthesis. Depletion of FtsZATinA. tumefacienscauses a striking phenotype: cells are extensively branched and accumulate growth active poles through tip splitting events. When cell division is blocked at a later stage by depletion of FtsA or FtsW, polar growth is terminated and ectopic growth poles emerge from mid‐cell. Overall, this work suggests thatA. tumefaciensFtsZ makes distinct contributions to the regulation of polar growth and cell division.

 
more » « less
NSF-PAR ID:
10461259
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Microbiology
Volume:
111
Issue:
4
ISSN:
0950-382X
Page Range / eLocation ID:
p. 1074-1092
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Polar growth in Agrobacterium pirates and repurposes well-known bacterial cell cycle proteins, such as FtsZ, FtsA, PopZ, and PodJ. Here we identify a heretofore unknown protein that we name GROWTH POLE RING (GPR) due to its striking localization as a hexameric ring at the growth pole during polar growth. GPR also localizes at the midcell late in the cell cycle just before division, where it is then poised to be precisely localized at new growth poles in sibling cells. GPR is 2,115 aa long, with two N-terminal transmembrane domains placing the bulk of the protein in the cytoplasm, N- and C-terminal proline-rich disordered regions, and a large 1,700-aa central region of continuous α-helical domains. This latter region contains 12 predicted adjacent or overlapping apolipoprotein domains that may function to sequester lipids during polar growth. Stable genetic deletion or riboswitch-controlled depletion results in spherical cells that grow poorly; thus, GPR is essential for wild-type growth and morphology. As GPR has no predicted enzymatic domains and it forms a distinct 200-nm-diameter ring, we propose that GPR is a structural component of an organizing center for peptidoglycan and membrane syntheses critical for cell envelope formation during polar growth. GPR homologs are found in numerous Rhizobiales; thus, our results and proposed model are fundamental to understanding polar growth strategy in a variety of bacterial species. 
    more » « less
  2. Bacterial cell division and peptidoglycan (PG) synthesis are orchestrated by the coordinated dynamic movement of essential protein complexes. Recent studies show that bidirectional treadmilling of FtsZ filaments/bundles is tightly coupled to and limiting for both septal PG synthesis and septum closure in some bacteria, but not in others. Here we report the dynamics of FtsZ movement leading to septal and equatorial ring formation in the ovoid-shaped pathogen,Streptococcus pneumoniae. Conventional and single-molecule total internal reflection fluorescence microscopy (TIRFm) showed that nascent rings of FtsZ and its anchoring and stabilizing proteins FtsA and EzrA move out from mature septal rings coincident with MapZ rings early in cell division. This mode of continuous nascent ring movement contrasts with a failsafe streaming mechanism of FtsZ/FtsA/EzrA observed in a ΔmapZmutant and anotherStreptococcusspecies. This analysis also provides several parameters of FtsZ treadmilling in nascent and mature rings, including treadmilling velocity in wild-type cells andftsZ(GTPase) mutants, lifetimes of FtsZ subunits in filaments and of entire FtsZ filaments/bundles, and the processivity length of treadmilling of FtsZ filament/bundles. In addition, we delineated the motion of the septal PBP2x transpeptidase and its FtsW glycosyl transferase-binding partner relative to FtsZ treadmilling inS. pneumoniaecells. Five lines of evidence support the conclusion that movement of the bPBP2x:FtsW complex in septa depends on PG synthesis and not on FtsZ treadmilling. Together, these results support a model in which FtsZ dynamics and associations organize and distribute septal PG synthesis, but do not control its rate inS. pneumoniae.

     
    more » « less
  3. Abstract

    Bacterial peptidoglycan (PG) synthesis requires strict spatiotemporal organization to reproduce specific cell shapes. In ovoid‐shapedStreptococcus pneumoniae(Spn), septal and peripheral (elongation) PG synthesis occur simultaneously at midcell. To uncover the organization of proteins and activities that carry out these two modes of PG synthesis, we examinedSpncells vertically oriented onto their poles to image the division plane at the high lateral resolution of 3D‐SIM (structured‐illumination microscopy). Labeling with fluorescent D‐amino acids (FDAA) showed that areas of new transpeptidase (TP) activity catalyzed by penicillin‐binding proteins (PBPs) separate into a pair of concentric rings early in division, representing peripheral PG (pPG) synthesis (outer ring) and the leading‐edge (inner ring) of septal PG (sPG) synthesis. Fluorescently tagged PBP2x or FtsZ locate primarily to the inner FDAA‐marked ring, whereas PBP2b and FtsX remain in the outer ring, suggesting roles in sPG or pPG synthesis, respectively. Pulses of FDAA labeling revealed an arrangement of separate regularly spaced “nodes” of TP activity around the division site of predivisional cells. Tagged PBP2x, PBP2b, and FtsX proteins also exhibited nodal patterns with spacing comparable to that of FDAA labeling. Together, these results reveal new aspects of spatially ordered PG synthesis in ovococcal bacteria during cell division.

     
    more » « less
  4. Summary

    FtsZ is the key regulator of bacterial cell division. It initiates division by forming a dynamic ring‐like structure, the Z‐ring, at the mid‐cell. What triggers the formation of the Z‐ring during the cell cycle is poorly understood. InEscherichia coli, the common view is that FtsZ concentration is constant throughout its doubling time and therefore regulation of assembly is controlled by some yet‐to‐be‐identified protein‐protein interactions. Using a newly developed functional, fluorescent FtsZ reporter, we performed a quantitative analysis of the FtsZ concentration throughout the cell cycle under slow growth conditions. In contrast to the common expectation, we show that FtsZ concentrations vary in a cell cycle‐dependent manner, and that upregulation of FtsZ synthesis correlates with the formation of the Z‐ring. The first half of the cell cycle shows an approximately fourfold upregulation of FtsZ synthesis, followed by its rapid degradation by ClpXP protease in the last 10% of the cell cycle. The initiation of rapid degradation coincides with the dissociation of FtsZ from the septum. Altogether, our data suggest that the Z‐ring formation in slow growth conditions inE. coliis partially controlled by a regulatory sequence wherein upregulation of an essential cell cycle factor is followed by its degradation.

     
    more » « less
  5. Agrobacterium tumefaciensC58 contains four replicons, circular chromosome (CC), linear chromosome (LC), cryptic plasmid (pAt), and tumor-inducing plasmid (pTi), and grows by polar growth from a single growth pole (GP), while the old cell compartment and its old pole (OP) do not elongate. We monitored the replication and segregation of these four genetic elements during polar growth. The three largest replicons (CC, LC, pAt) reside in the OP compartment prior to replication; post replication one copy migrates to the GP prior to division. CC resides at a fixed location at the OP and replicates first. LC does not stay fixed at the OP once the cell cycle begins and replicates from varied locations 20 min later than CC. pAt localizes similarly to LC prior to replication, but replicates before the LC and after the CC. pTi does not have a fixed location, and post replication it segregates randomly throughout old and new cell compartments, while undergoing one to three rounds of replication during a single cell cycle. Segregation of the CC and LC is dependent on the GP and OP identity factors PopZ and PodJ, respectively. Without PopZ, replicated CC and LC do not efficiently partition, resulting in sibling cells without CC or LC. Without PodJ, the CC and LC exhibit abnormal localization to the GP at the beginning of the cell cycle and replicate from this position. These data reveal PodJ plays an essential role in CC and LC tethering to the OP during early stages of polar growth.

     
    more » « less