skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Atomic Structure and Electrical Activity of Grain Boundaries and Ruddlesden–Popper Faults in Cesium Lead Bromide Perovskite
Abstract To evaluate the role of planar defects in lead‐halide perovskites—cheap, versatile semiconducting materials—it is critical to examine their structure, including defects, at the atomic scale and develop a detailed understanding of their impact on electronic properties. In this study, postsynthesis nanocrystal fusion, aberration‐corrected scanning transmission electron microscopy, and first‐principles calculations are combined to study the nature of different planar defects formed in CsPbBr3nanocrystals. Two types of prevalent planar defects from atomic resolution imaging are observed: previously unreported Br‐rich [001](210)∑5 grain boundaries (GBs) and Ruddlesden–Popper (RP) planar faults. The first‐principles calculations reveal that neither of these planar faults induce deep defect levels, but their Br‐deficient counterparts do. It is found that the ∑5 GB repels electrons and attracts holes, similar to an n–p–n junction, and the RP planar defects repel both electrons and holes, similar to a semiconductor–insulator–semiconductor junction. Finally, the potential applications of these findings and their implications to understand the planar defects in organic–inorganic lead‐halide perovskites that have led to solar cells with extremely high photoconversion efficiencies are discussed.  more » « less
Award ID(s):
1806147
PAR ID:
10461549
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
4
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ruddlesden–Popper perovskites (RPPs) are promising materials for optoelectronic devices. While iodide‐based RPPs are well‐studied, the crystallization of mixed‐halide RPPs remains less explored. Understanding the factors affecting their formation and crystallization are vital for optimizing morphology, phase purity, and orientation, which directly impact device performance. Here, we investigate the crystallization and properties of mixed‐halide RPPs (PEA)2FAn−1Pbn(Br1/3I2/3)3n + 1(PEA = C6H5(CH2)2NH3+and FA = CH(NH2)2+) (n = 1, 5, 10) using DMSO ((CH3)2SO) or NMP (OC4H6NCH3) as cosolvents and MACl (MA = CH3NH3+) as an additive. For the first time, the presence of planar defects in RPPs is directly observed by in situ grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) and confirmed through the simulation of the patterns that matched the experimental. GIWAXS data also reveals that DMSO promotes higher crystallinity and vertical orientation, while MACl enhances crystal quality but increases halide segregation, shown here by nano X‐ray fluorescence (nano‐XRF) experiments. For low‐n RPPs, orientation is crucial for solar cell efficiency, but its impact decreases with increasing n. Our findings provide insights into optimizing mixed‐halide RPPs, guiding strategies to improve crystallization, phase control, and orientation for better performance not only in solar cells but also in other potential optoelectronic devices. 
    more » « less
  2. Abstract We incorporate Se into the 3D halide perovskite framework using the zwitterionic ligand: SeCYS (+NH3(CH2)2Se), which occupies both the Xand A+sites in the prototypical ABX3perovskite. The new organoselenide‐halide perovskites: (SeCYS)PbX2(X=Cl, Br) expand upon the recently discovered organosulfide‐halide perovskites. Single‐crystal X‐ray diffraction and pair distribution function analysis reveal the average structures of the organoselenide‐halide perovskites, whereas the local lead coordination environments and their distributions were probed through solid‐state77Se and207Pb NMR, complemented by theoretical simulations. Density functional theory calculations illustrate that the band structures of (SeCYS)PbX2largely resemble those of their S analogs, with similar band dispersion patterns, yet with a considerable band gap decrease. Optical absorbance measurements indeed show band gaps of 2.07 and 1.86 eV for (SeCYS)PbX2with X=Cl and Br, respectively. We further demonstrate routes to alloying the halides (Cl, Br) and chalcogenides (S, Se) continuously tuning the band gap from 1.86 to 2.31 eV–straddling the ideal range for tandem solar cells or visible‐light photocatalysis. The comprehensive description of the average and local structures, and how they can fine‐tune the band gap and potential trap states, respectively, establishes the foundation for understanding this new perovskite family, which combines solid‐state and organo‐main‐group chemistry. 
    more » « less
  3. Abstract Two critical limitations of organic–inorganic lead halide perovskite materials for solar cells are their poor stability in humid environments and inclusion of toxic lead. In this study, high‐throughput density functional theory (DFT) methods are used to computationally model and screen 1845 halide perovskites in search of new materials without these limitations that are promising for solar cell applications. This study focuses on finding materials that are comprised of nontoxic elements, stable in a humid operating environment, and have an optimal bandgap for one of single junction, tandem Si‐perovskite, or quantum dot–based solar cells. Single junction materials are also screened on predicted single junction photovoltaic (PV) efficiencies exceeding 22.7%, which is the current highest reported PV efficiency for halide perovskites. Generally, these methods qualitatively reproduce the properties of known promising nontoxic halide perovskites that are either experimentally evaluated or predicted from theory. From a set of 1845 materials, 15 materials pass all screening criteria for single junction cell applications, 13 of which are not previously investigated, such as (CH3NH3)0.75Cs0.25SnI3, ((NH2)2CH)Ag0.5Sb0.5Br3, CsMn0.875Fe0.125I3, ((CH3)2NH2)Ag0.5Bi0.5I3, and ((NH2)2CH)0.5Rb0.5SnI3. These materials, together with others predicted in this study, may be promising candidate materials for stable, highly efficient, and nontoxic perovskite‐based solar cells. 
    more » « less
  4. The material family halide perovskites has been critical in recent room-temperature radiation detection semiconductor research. Cesium lead bromide (CsPbBr3) is a halide perovskite that exhibits characteristics of a semiconductor that would be suitable for applications in various fields. In this paper, we report on the correlations between material purification and crystal material properties. Crystal boules of CsPbX3 (where X = Cl, Br, I, or mixed) were grown with the Bridgman growth method. We describe in great detail the fabrication techniques used to prepare sample surfaces for contact deposition and sample testing. Current–voltage measurements, UV–Vis and photocurrent spectroscopy, as well as photoluminescence measurements, were carried out for material characterization. Bulk resistivity values of up to 3.0 × 109 Ω∙cm and surface resistivity values of 1.3 × 1011 Ω/□ indicate that the material can be used for low-noise semiconductor detector applications. Preliminary radiation detectors were fabricated, and using photocurrent measurements we have estimated a value of the mobility–lifetime product for holes (μτ)h of 2.8 × 10−5 cm2/V. The results from the sample testing can shed light on ways to improve the crystal properties for future work, not only for CsPbX3 but also other halide perovskites. 
    more » « less
  5. Abstract Halide perovskites are revolutionizing the renewable energy sector owing to their high photovoltaic efficiency, low manufacturing cost, and flexibility. Their remarkable mobility and long carrier lifetime are also valuable for information technology, but fundamental challenges like poor stability under an electric field prevent realistic applications of halide perovskites in electronics. Here, it is discovered that valleytronics is a promising route to leverage the advantages of halide perovskites and derivatives for information storage and processing. The synthesized all‐inorganic lead‐free perovskite derivative, Cs3Bi2I9, exhibits strong light–matter interaction and parity‐dependent optically addressable valley degree of freedom. Robust optical helicity in all odd‐layer‐number crystals with inversion symmetry breaking is observed, indicating excitonic coherence extending well beyond 11 layers. The excellent optical and valley properties of Cs3Bi2I9arise from the unique parallel bands, according to first principles calculations. This discovery points to new materials design principles for scalable valleytronic devices and demonstrates the promise of perovskite derivatives beyond energy applications. 
    more » « less