skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-Domain Joint Dictionary Learning for ECG Inference From PPG
The inverse problem of inferring clinical gold-standard electrocardiogram (ECG) from photoplethysmogram (PPG) that can be measured by affordable wearable Internet of Healthcare Things (IoHT) devices is a research direction receiving growing attention. It combines the easy measurability of PPG and the rich clinical knowledge of ECG for long-term continuous cardiac monitoring. The prior art for reconstruction using a universal basis, such as discrete cosine transform (DCT), has limited fidelity for uncommon ECG shapes due to the lack of representative power. To better utilize the data and improve data representation, we design two dictionary learning frameworks, the cross-domain joint dictionary learning (XDJDL), and the label-consistent XDJDL (LC-XDJDL), to further improve the ECG inference quality and enrich the PPG-based diagnosis knowledge. Building on the K-SVD technique, the proposed joint dictionary learning frameworks extend the expressive power by optimizing simultaneously a pair of signal dictionaries for PPG and ECG with the transforms to relate their sparse codes and disease information. The proposed models are evaluated with a variety of PPG and ECG morphologies from two benchmark datasets that cover various age groups and disease types. The results show the proposed frameworks achieve better inference performance than previous methods with average Pearson coefficients being 0.88 using XDJDL and 0.92 using LC-XDJDL, suggesting an encouraging potential for ECG screening using PPG based on the proactively learned PPG-ECG relationship. By enabling the dynamic monitoring and analysis of the health status of an individual, the proposed frameworks contribute to the emerging digital twins paradigm for personalized healthcare.  more » « less
Award ID(s):
2124291
PAR ID:
10462384
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Internet of Things Journal
Volume:
10
Issue:
9
ISSN:
2372-2541
Page Range / eLocation ID:
8140 to 8154
Subject(s) / Keyword(s):
Digital twins electrocardiogram (ECG) Internet of Healthcare Things (IoHT) joint dictionary learning photoplethysmogram (PPG) sparse coding
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This article presents a computational solution that enables continuous cardiac monitoring through cross-modality inference of electrocardiogram (ECG). While some smartwatches now allow users to obtain a 30-s ECG test by tapping a built-in bio-sensor, these short-term ECG tests often miss intermittent and asymptomatic abnormalities of cardiac functions. It is also infeasible to expect persistently active user participation for long-term continuous cardiac monitoring in order to capture these and other types of cardiac abnormalities. To alleviate the need for continuous user attention and active participation, we design a lightweight neural network that infers ECG from the photoplethysmogram (PPG) signal sensed at the skin surface by a wearable optical sensor. We also develop a diagnosis-oriented training strategy to enable the neural network to capture the pathological features of ECG, aiming to increase the utility of reconstructed ECG signals for screening cardiovascular diseases (CVDs). We also leverage model interpretation to obtain insights from data-driven models, for example, to reveal some associations between CVDs and ECG/PPG and to demonstrate how the neural network copes with motion artifacts in the ambulatory application. The experimental results on three datasets demonstrate the feasibility of inferring ECG from PPG, achieving a high fidelity of ECG reconstruction with only about 40000 parameters. 
    more » « less
  2. null (Ed.)
    The growing demand for recording longer ECG signals to improve the effectiveness of IoT-enabled remote clinical healthcare is contributing large amounts of ECG data. While lossy compression techniques have shown potential in significantly lowering the amount of data, investigation on how to trade-off between data reduction and data fidelity on ECG data received relatively less attention. This paper gives insight into the power of lossy compression to ECG signals by balancing between data quality and compression ratio. We evaluate the performance of transformed-based lossy compressions on the ECG datasets collected from the Biosemi ActiveTwo devices. Our experimental results indicate that ECG data exhibit high energy compaction property through transformations like DCT and DWT, thus could improve compression ratios significantly without hurting data fidelity much. More importantly, we evaluate the effect of lossy compression on ECG signals by validating the R-peak in the QRS complex. Our method can obtain low error rates measured in PRD (as low as 0.3) and PSNR (up to 67) using only 5% of the transform coefficients. Therefore, R-peaks in the reconstructed ECG signals are almost identical to ones in the original signals, thus facilitating extended ECG monitoring. 
    more » « less
  3. With recent advances in Deep Learning (DL) models, the healthcare domain has seen an increased adoption of neural networks for clinical diagnosis, monitoring, and prediction. Deep Learning models have been developed for various tasks using 1D (one-dimensional) time-series signals. Time-series healthcare data, typically collected through sensors, have specific structures and characteristics such as frequency and amplitude. The nature of these features, including varying sampling rates that depend on the instruments used for sensing, poses challenges in handling them. Electrocardiograms (ECG), a class of 1D time-series signals representing the electrical activity of the heart, have been used to develop heart condition classification decision support systems. The sampling rate of these signals, influenced by different ECG instruments as well as their calibrations, can greatly impact the learning functions of deep learning models and subsequently, their decision outcomes. This hinders the development and deployment of generalized, DL-based ECG classifiers that can work with data from a variety of ECG instruments, particularly when the sampling rate of the training data remains unknown to users. Moreover, DL models are not designed to recognize the sampling rate of the testing data on which they are being deployed, further complicating their effective application across diverse clinical settings. In this study, we investigated the effect of different sampling rates of time-series ECG signals on DL-based ECG classifiers. To the best of our knowledge, this is the first work to understand how varying sampling rates affect the performance of DL-based models for classifying 1D time-series ECG signals. Through our comprehensive experiments, we showed that accuracy can drop by as much as 20% when the training and testing sampling rates are different. We provide visual explanations to understand the differences in learned model features through activation maps when the sampling rates for training and testing data are different. We also investigated potential strategies to address the challenges posed by different sampling rates: (i) transfer learning, (ii) resampling, and (iii) training a DL model using ECG data at different sampling rates. 
    more » « less
  4. This work discusses an optimization framework to embed dictionary learning frameworks with the wave equation as a strategy for incorporating prior scientific knowledge into a machine learning algorithm. We modify dictionary learning to study ultrasonic guided wave-based defect detection for non-destructive structural health monitoring systems. Specifically, this work involves altering the popular-SVD algorithm for dictionary learning by enforcing prior knowledge about the ultrasonic guided wave problem through a physics-based regularization derived from the wave equation. We confer it the name “wave-informed K-SVD.” Training dictionary on data simulated from a fixed string added with noise using both K-SVD and wave-informed K-SVD, we show an improved physical consistency of columns of dictionary matrix with the known modal behavior of different one-dimensional wave simulations is observed. 
    more » « less
  5. null (Ed.)
    A natural language processing (NLP) application requires sophisticated lexical resources to support its processing goals. Different solutions, such as dictionary lookup and MetaMap, have been proposed in the healthcare informatics literature to identify disease terms with more than one word (multi-gram disease named entities). Although a lot of work has been done in the identification of protein- and gene-named entities in the biomedical field, not much research has been done on the recognition and resolution of terminologies in the clinical trial subject eligibility analysis. In this study, we develop a specialized lexicon for improving NLP and text mining analysis in the breast cancer domain, and evaluate it by comparing it with the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT). We use a hybrid methodology, which combines the knowledge of domain experts, terms from multiple online dictionaries, and the mining of text from sample clinical trials. Use of our methodology introduces 4243 unique lexicon items, which increase bigram entity match by 38.6% and trigram entity match by 41%. Our lexicon, which adds a significant number of new terms, is very useful for matching patients to clinical trials automatically based on eligibility matching. Beyond clinical trial matching, the specialized lexicon developed in this study could serve as a foundation for future healthcare text mining applications. 
    more » « less