skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ionic Liquid-Packed Microfluidic Device with Non-Planar Microelectrode as a Miniaturized Electrochemical Gas Sensor
Integrating transducer/sensing materials into microfluidic platforms has enhanced gas sensors′ sensitivity, selectivity, and response time while facilitating miniaturization. In this manuscript, microfluidics has been integrated with non-planar microelectrode array and functionalized ionic liquids (ILs) to develop a novel miniaturized electrochemical gas sensor architecture. The sensor employs the IL 1-ethyl-3-methylimidazolium 2-cyanopyrolide ([EMIM][2-CNpyr]) as the electrolyte and capture molecule for detecting carbon dioxide (CO 2 ). The three-layer architecture of the sensor consists of a microchannel with the IL sandwiched between glass slides containing microelectrode arrays, forming a non-planar structure. This design facilitates electric field penetration through the IL, capturing CO 2 binding perturbations throughout the channel volume to enhance sensitivity. CO 2 binding with [EMIM][2-CNpyr] generates carboxylate ([EMIM] + -CO2 − ]), carbamate ([2-CNpyr]-CO2 − ]), and pyrrole-2-carbonitrile (2-CNpyrH) species, significantly decreasing the conductivity. The viscosity is also increased, leading to a further decrease in conductivity. These cumulative effects increase charge transfer resistance in the impedance spectrum, allowing a linear calibration curve obtained using Langmuir Isotherm. The sensitivity and reproducibility in CO 2 detection are demonstrated by two electrode configurations using the calibration curve. The developed sensor offers a versatile platform for future applications.  more » « less
Award ID(s):
1751759 2048361 1904592
PAR ID:
10462653
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
170
Issue:
8
ISSN:
0013-4651
Page Range / eLocation ID:
087508
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, the solubility properties of the ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) were studied using a high-pressure, high-temperature set-up employing the pressure-drop technique. [EMIM][BF4] was selected for study because it is used as the sweep liquid in a membrane reactor (MR)-based methanol synthesis (MR-MeS) process recently proposed and studied by our group. The MR-MeS studies indicated high methanol (MeOH) solubilities in the IL under typical MeS reaction conditions, which then motivated this study to measure such solubilities directly under non-reactive conditions to validate the findings of the MR study. In addition, during the MR-MeS studies a concern existed about the solubility of CO2 in [EMIM][BF4], since it is a reactant in the MeS process and its dissolution in the sweep liquid would be detrimental for reactor performance. Studies, therefore, were also carried out to investigate the solubility of CO2, in addition to MeOH, in the IL. Our investigation indicates that though CO2 solubilities in the [EMIM][BF4] are high at room temperature, they become negligible at the typical MeS operating conditions (i.e., temperatures above 200 ⁰C). 
    more » « less
  2. The roles of the ionic liquid (IL), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), and water in controlling the mechanism, energetics, and electrocatalytic activity of CO2 reduction to CO on silver in nonaqueous electrolytes were investigated. The first electron transfer occurs to CO2 at reduced overpotentials when it is trapped between the planes of the [EMIM]+ ring and the electrode surface due to cation reorientation as determined from voltammetry, in situ surface-enhanced Raman spectroscopy, and density functional theory calculations. Within this interface, water up to 0.5 M does not induce significant Faradaic activity, opposing the notion of it being a free proton source. Instead, water acts as a hydrogen bond donor, and the proton is sourced from [EMIM]+. Furthermore, this study demonstrates that alcohols with varying acidities tune the hydrogen bonding network in the interfacial microenvironment to lower the energetics required for CO2 reduction. The hydrogen bonding suppresses the formation of inactive carboxylate species, thus preserving the catalytic activity of [EMIM]+. The ability to tune the hydrogen bonding network opens new avenues for advancing IL-mediated electrocatalytic reactions in nonaqueous electrolytes. 
    more » « less
  3. Continuous greenhouse gas monitoring at sub-zero temperatures is needed for monitoring greenhouse gas emission in cold environments such as the Arctic tundra. This work reports a single-frequency electrochemical impedance sensing (SF-EIS) method for real-time continuous monitoring of carbon dioxide (CO2) at a wide range of temperatures (−15 to 40 °C) by using robust ionic liquid (IL) sensing materials and noninvasive, low-power, and low-cost impedance readout mechanisms since they cause minimal changes in the sensing interface, avoiding the baseline change for long-term continuous sensing. In addition, a miniaturized planar electrochemical sensor was fabricated that incorporates a hydrophobic 1-butyl-1-methylpyrrolidinium bis(trifluromethylsulfonyl)imide ([Bmpy][NTf2]) IL electrolyte and Pt black electrode materials. The high viscosity of the ILs facilitates the formation of thin, ordered, and concentrated layers of ionic charges, and the inverse relationship of IL viscosity with temperature makes them especially suited for impedance sensing at low temperatures. The unique low-temperature properties of ILs together with EIS transduction mechanisms are shown to be sensitive and selective for continuously monitoring CO2 at a −15 to 40 °C temperature range via impedance changes at a specifically selected frequency at the open circuit potential (OCP). Molecular dynamics simulations revealed insights into the structure and dynamics of the IL at varying temperatures in the presence of methane and CO2 and provided potential explanations for the observed sensing results. The miniaturized and flexible planar electrochemical sensor with the [Bmpy][NTf2] electrolyte was tested repeatedly at subzero temperatures over a 58-day period, during which good stability and repeatability were obtained. The CO2 impedance sensor was further tested for sensing CO2 from soil samples and shows promising results for their use in real-time monitoring of greenhouse gas emissions in cold temperatures such as permafrost soils. 
    more » « less
  4. Abstract This study examines the activity of chemisorbed CO2 species in the microenvironment formed by bifunctional ionic liquids (ILs) in the reactive capture and conversion (RCC) of CO2 to CO on silver. Comparative electroanalytical measurements with imidazolium based ILs were performed to probe the impact of electrostatic interactions, anion and cation basicity, and hydrogen bonding on RCC. Particularly, ILs with 1-ethyl,3-methylimidazolium ([EMIM]+) and 1-ethyl, 2,3-methylimidazolium ([EMMIM]+) cations and aprotic heterocyclic anions of 2-cyanopyrrolide ([2-CNpyr]) and 1,2,4-triazolide ([1,2,4-Triz]) were examined for RCC. It was found that anion–CO2 carbamate complexes facilitate RCC at significantly lower overpotentials compared to cation–CO2 carboxylate complexes. Additionally, [EMIM]+ was found to better stabilize anion–CO2 complexes than [EMMIM]+. Furthermore, it was found that 2-CNpyrH that naturally forms in CO2 absorption competes for electrode surface adsorption with the anion–CO2 carbamate complex, thereby reducing the electrochemical activity of the anion–CO2 complex. These results highlight the importance of IL structure in tuning the interfacial interactions and suggest that ILs with anion-dominated CO2 chemisorption enhances CO2 utilization in RCC applications. 
    more » « less
  5. This study aims to develop a microelectrode array-based neural probe that can record dopamine activity with high stability and sensitivity. To mimic the high stability of the gold standard method (carbon fiber electrodes), the microfabricated platinum microelectrode is coated with carbon-based nanomaterials. Carboxyl-functionalized multi-walled carbon nanotubes (COOH-MWCNTs) and carbon quantum dots (CQDs) were selected for this purpose, while a conductive polymer like poly (3-4-ethylene dioxythiophene) (PEDOT) or polypyrrole (PPy) serves as a stable interface between the platinum of the electrode and the carbon-based nanomaterials through a co-electrodeposition process. Based on our comparison between different conducting polymers and the addition of CQD, the CNT–CQD–PPy modified microelectrode outperforms its counterparts: CNT–CQD–PEDOT, CNT–PPy, CNT–PEDOT, and bare Pt microelectrode. The CNT–CQD–PPy modified microelectrode has a higher conductivity, stability, and sensitivity while achieving a remarkable limit of detection (LOD) of 35.20 ± 0.77 nM. Using fast-scan cyclic voltammetry (FSCV), these modified electrodes successfully measured dopamine’s redox peaks while exhibiting consistent and reliable responses over extensive use. This electrode modification not only paves the way for real-time, precise dopamine sensing using microfabricated electrodes but also offers a novel electrochemical sensor for in vivo studies of neural network dynamics and neurological disorders. 
    more » « less