skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Mass spectroscopy study of the intermediate magic-size cluster species during cooperative cation exchange
Cation exchange is a versatile post-synthetic method to explore a wide range of nanoparticle compositions, phases, and morphologies. Recently, several studies have expanded the scope of cation exchange to magic-size clusters (MSCs). Mechanistic studies indicated that MSC cation exchange undergoes a two-stage reaction pathway instead of the continuous diffusion-controlled mechanism found in nanoparticle cation exchange reactions. The cation exchange intermediate, however, has not been well-identified despite it being the key to understanding the reaction mechanism. Only indirect evidence, such as exciton peak shifts and powder x-ray diffraction, has been used to indicate the formation of the cation exchange intermediate. In this paper, we investigate the unusual nature of cation exchange in nanoclusters using our previously reported CdS MSC. High-resolution mass spectra reveal two cation exchanged reaction intermediates [Ag2Cd32S33(L) and AgCd33S33(L), L: oleic acid] as well as the fully exchanged Ag2S cluster. Crystal and electronic structure characterizations also confirm the two-stage reaction mechanism. Additionally, we investigate the Cu/CdS MSC cation exchange reaction and find a similar two-stage reaction mechanism. Our study shows that the formation of dilutely exchanged intermediate clusters can be generally found in the first stage of the MSC cation exchange reaction. By exchanging different cations, these intermediate clusters can access varying properties compared to their unexchanged counterparts.  more » « less
Award ID(s):
2003431 2120947 1719875
PAR ID:
10463046
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
1
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Isomerization, the process by which a molecule is coherently transformed into another molecule with the same molecular formula but a different atomic structure, is an important and well-known phenomenon of organic chemistry, but has only recently been observed for inorganic nanoclusters. Previously, CdS nanoclusters were found to isomerize between two end point structures rapidly and reversibly (the α-phase and β-phase), mediated by hydroxyl groups on the surface. This observation raised many significant structural and pathway questions. One critical question is why no intermediate states were observed during the isomerization; it is not obvious why an atomic cluster should only have two stable end points rather than multiple intermediate arrangements. In this study, we report that the use of amide functional groups can stabilize intermediate phases during the transformation of CdS magic-size clusters between the α-phase and the β-phase. When treated with amides in organic solvents, the amides not only facilitate the α-phase to β-phase isomerization but also exhibit three distinct excitonic features, which we call the β340-phase, β350-phase, and β367-phase. Based on pair distribution function analysis, these intermediates strongly resemble the β-phase structure but deviate greatly from the α-phase structure. All phases (β340-phase, β350-phase, and β367-phase) have nearly identical structures to the β-phase, with the β340-phase having the largest deviation. Despite these intermediates having similar atomic structures, they have up to a 583 meV difference in band gap compared to the β-phase. Kinetic studies show that the isomers and intermediates follow a traditional progression in the thermodynamic stability of β340-phase/β350-phase < α-phase < β367-phase < β-phase. The solvent identity and polarity play a crucial role in kinetically arresting these intermediates. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies paired with simple density functional theory calculations reveal that the likely mechanism is due to the multifunctional nature of the amides that form an amphoteric surface binding bond motif, which promotes a change in the carboxylic acid binding mode. This change from chelating binding modes to bridging binding modes initiates the isomerization. We propose that the carbonyl group is responsible for the direct interaction with the surface, acting as an L-type ligand which then pulls electron density away from the electron-poor nitrogen site, enabling them to interact with the carboxylate ligands and initiate the change in the binding mode. The isomerization of CdS nanoclusters continues to be a topic of interest, giving insight into fundamental nanoscale chemistry and physics. 
    more » « less
  2. Surface charge is a key characteristic of nanoparticles which has great potential to impact the interactions of nanoparticles and biological systems. Understanding the role charge plays in these interactions is key to determining the ecological risks of nanoparticle exposure and informing sustainable nanoparticle design. In this study, the model freshwater algae Raphidocelis subcapitata was exposed to carbon dots (CDs) functionalized with polymers to have positive, negative, or neutral surface charges to examine the impact of nanoparticle surface charge on nano-algae interactions. Traditional toxicological endpoints of survival and growth inhibition were measured. Additionally, morphological impacts on whole cells, individual organelles, and cellular components were quantified using high-content fluorescence microscopy, demonstrating one of the first uses of high-content imaging in microalgae. Results indicate that PEI functionalized, positively charged CDs are most toxic to green algae (EC50 42.306 μg/L), but that CDs with negative charge induce sublethal impacts on algae. PEI-CD toxicity is hypothesized to be related to electrostatic interactions between CDs and the algal cell wall, which lead to significant cell aggregation. Interestingly, morphological data suggests that exposure to both positively and negatively charged CDs leads to increased neutral lipid droplet formation, a possible indicator of nutrient stress. Further investigation of the mechanisms underlying impacts of nanoparticle surface charge on algae biology can lead to more sustainable nanoparticle design and environmental protections. 
    more » « less
  3. A hybrid ion-exchange and algae photosynthesis (HAPIX) process was used for treatment of side stream centrate from an anaerobic digester treating waste activated sludge. Although the high NH4+ -N concentration of the centrate (~1180 mg/L) inhibited the algae growth in unamended controls, addition of 150 g/L of zeolite reduced the ammonia toxicity due to its ion exchange capacity. NH4+-N was reduced from 1,180 mg/L to 107 mg/L within 24 hours by ion exchange. Na+ was the major cation exchanged with NH4+. The addition of algae further reduced the NH4+-N concentration to 10.5 mg/L after 8 days of operation. Zeolite that was saturated with NH4+ can be bioregenerated by the algae growth so that the zeolite can adsorb more NH4+ in the wastewater. The mathematical model that combined ion-exchange and algal photosynthesis processes predicted the aqueous NH4 + -N concentration well. The HAPIX process is feasible to treat high NH4+-N side stream wastewater. 
    more » « less
  4. In this Letter, we used fluorescence microscopy to image the reversible transformation of individual CsPbCl3 nanocrystals to CsPbBr3, which enables us to quantify heterogeneity in reactivity among hundreds of nanocrystals prepared within the same batch. We observed a wide distribution of waiting times for individual nanocrystals to react as has been seen previously for cation exchange and ion intercalation. However, a significant difference for this reaction is that the switching times for changes in fluorescence intensity are dependent on the concentration of substitutional halide ions in solution (i.e., Br– or Cl–). On the basis of the high solid-state miscibility between CsPbCl3 and CsPbBr3, we develop a model in which the activation energy for anion exchange depends on the density of exchanged ions in the nanocrystal. The heterogeneity in reaction kinetics observed among individual nanocrystals limits the compositional uniformity that can be achieved in luminescent CsPbCl3–xBrx nanocrystals prepared by anion exchange. 
    more » « less
  5. Abstract Ni cation sites exchanged onto microporous materials catalyze ethene oligomerization to butenes and heavier oligomers but also undergo rapid deactivation. The use of mesoporous supports has been reported previously to alleviate deactivation in regimes of high ethene pressures and low temperatures that cause capillary condensation of ethene within mesoporous voids. Here, we reproduce these prior findings on mesoporous Ni‐MCM‐41 and report that, in sharp contrast, reaction conditions that nominally correspond to ethene capillary condensation in microporous Ni‐Beta or Ni‐FAU zeolites do not mitigate deactivation, likely because confinement within microporous voids restricts the formation of condensed phases of ethene that are effective at solvating and desorbing heavier intermediates that are precursors to deactivation. Deactivation rates are found to transition from a first‐order to a second‐order dependence on Ni site density in Ni‐FAU zeolites with increasing ethene pressure, suggesting a transition in the dominant deactivation mechanism involving a single Ni site to one involving two Ni sites, reminiscent of the effects of increasing H2pressure on changing the kinetic order of deactivation in our prior work on Ni‐Beta zeolites. 
    more » « less