skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Laser Scribing of Photovoltaic Solar Thin Films: A Review
The development of thin-film photovoltaics has emerged as a promising solution to the global energy crisis within the field of solar cell technology. However, transitioning from laboratory scale to large-area solar cells requires precise and high-quality scribes to achieve the required voltage and reduce ohmic losses. Laser scribing has shown great potential in preserving efficiency by minimizing the drop in geometrical fill factor, resistive losses, and shunt formation. However, due to the laser induced photothermal effects, various defects can initiate and impact the quality of scribed grooves and weaken the module’s efficiency. In this regard, much research has been conducted to analyze the geometrical fill factor, surface integrity, and electrical performance of the laser scribes to reach higher power conversion efficiencies. This comprehensive review of laser scribing of photovoltaic solar thin films pivots on scribe quality and analyzes the critical factors and challenges affecting the efficiency and reliability of the scribing process. This review also covers the latest developments in using laser systems, parameters, and techniques for patterning various types of solar thin films to identify the optimized laser ablation condition. Furthermore, potential research directions for future investigations at improving the quality and performance of thin film laser scribing are suggested.  more » « less
Award ID(s):
1903740
PAR ID:
10463283
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Manufacturing and Materials Processing
Volume:
7
Issue:
3
ISSN:
2504-4494
Page Range / eLocation ID:
94
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cadmium telluride (CdTe) thin film solar cells have gained significant attention in the photovoltaic industry due to their high efficiency and low cost. CdTe solar cells have achieved a high‐power conversion efficiency of 23.1%. To further boost the device's performance, it is crucial to systematically tune the doping concentration and carrier concentration, which are dominated by the doping approach and the following dopant activation processes. Both Group I elements (e.g., Cu) and Group V elements (e.g., As) doping have demonstrated high efficiency and utilizing various doping techniques. This review provides an overview of the history of the CdTe thin film technology, doping mechanisms, doping techniques, challenges, and potential solutions to further improve device performance. 
    more » « less
  2. Abstract With the invention of chirped pulse amplification for lasers in the mid-1980s, high power ultrafast lasers entered into the world as a disruptive tool, with potential impact on a broad range of application areas. Since then, ultrafast lasers have revolutionized laser–matter interaction and unleashed their potential applications in manufacturing processes. With unprecedented short pulse duration and high laser intensity, focused optical energy can be delivered to precisely define material locations on a time scale much faster than thermal diffusion to the surrounding area. This unique characteristic has fundamentally changed the way laser interacts with matter and enabled numerous manufacturing innovations over the past few decades. In this paper, an overview of ultrafast laser technology with an emphasis on femtosecond laser is provided first, including its development, type, working principle, and characteristics. Then, ultrafast laser applications in manufacturing processes are reviewed, with a focus on micro/nanomachining, surface structuring, thin film scribing, machining in bulk of materials, additive manufacturing, bio manufacturing, super high resolution machining, and numerical simulation. Both fundamental studies and process development are covered in this review. Insights gained on ultrafast laser interaction with matter through both theoretical and numerical researches are summarized. Manufacturing process innovations targeting various application areas are described. Industrial applications of ultrafast laser-based manufacturing processes are illustrated. Finally, future research directions in ultrafast laser-based manufacturing processes are discussed. 
    more » « less
  3. Rapid progress has been achieved in thin film CdTe solar cells, reaching a power conversion efficiency of 22.1 %. Researchers demonstrated a short-circuit current density (Jsc) of ≈ 31 mA/cm2 and a fill factor (FF) of ≈ 79 %, close to the theoretically calculated maximum values. However, the open-circuit voltage (Voc) remains below 0.9 V, much lower than the estimated Voc of 1.2 V. One strategy to improve the Voc is to implement a passivated back-contact on CdTe that can reduce the recombination by repelling minority carriers at the surface (i.e., electrons in CdTe). An aluminum oxide thin film (Al2O3) is an attractive candidate owing to its innate fixed negative charges (1012 ~ 1013 cm-2). Here, we use a patterned Al2O3 layer on CdTe to produce PERC-like CdTe solar cells (CdTe PERC). 
    more » « less
  4. Combinatorial growth is capable of creating a compositional gradient for thin film materials and thus has been adopted to explore composition variation mostly for metallic alloy thin films and some dopant concentrations for ceramic thin films. This study uses a combinatorial pulsed laser deposition method to successfully fabricate two‐phase oxide–oxide vertically aligned nanocomposite (VAN) thin films of La0.7Sr0.3MnO3(LSMO)‐NiO with variable composition across the film area. The LSMO‐NiO compositional gradient across the film alters the two‐phase morphology of the VAN through varying nanopillar size and density. Additionally, the magnetic anisotropy and magnetoresistance properties of the nanocomposite thin films increase with increasing NiO composition. This demonstration of a combinatorial method for VAN growth can increase the efficiency of nanocomposite thin film research by allowing all possible compositions of thin film materials to be explored in a single deposition. 
    more » « less
  5. Abstract Fluorinated molecule 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4‐TCNQ) and its derivatives have been used in polymer:fullerene solar cells primarily as a dopant to optimize the electrical properties and device performance. However, the underlying mechanism and generality of how F4‐TCNQ affects device operation and possibly the morphology is poorly understood, particularly for emerging nonfullerene organic solar cells. In this work, the influence of F4‐TCNQ on the blend film morphology and photovoltaic performance of nonfullerene solar cells processed by a single halogen‐free solvent is systematically investigated using a set of morphological and electrical characterizations. In solar cells with a high‐performance polymer:small molecule blend FTAZ:IT‐M, F4‐TCNQ has a negligibly small effect on the molecular packing and surface characteristics, while it clearly affects the electronic properties and mean‐square composition variation of the bulk. In comparison to the control devices with an average power conversion efficiency (PCE) of 11.8%, inclusion of a trace amount of F4‐TCNQ in the active layer has improved device fill factor and current density, which has resulted into a PCE of 12.4%. Further increase in F4‐TCNQ content degrades device performance. This investigation aims at delineating the precise role of F4‐TCNQ in nonfullerene bulk heterojunction films, and thereby establishing a facile approach to fabricate highly optimized nonfullerene solar cells. 
    more » « less