skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal Structure Learning: A Combinatorial Perspective
Abstract In this review, we discuss approaches for learning causal structure from data, also called causal discovery . In particular, we focus on approaches for learning directed acyclic graphs and various generalizations which allow for some variables to be unobserved in the available data. We devote special attention to two fundamental combinatorial aspects of causal structure learning. First, we discuss the structure of the search space over causal graphs. Second, we discuss the structure of equivalence classes over causal graphs, i.e., sets of graphs which represent what can be learned from observational data alone, and how these equivalence classes can be refined by adding interventional data.  more » « less
Award ID(s):
1651995
PAR ID:
10463320
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Foundations of Computational Mathematics
ISSN:
1615-3375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Directed acyclic graphical models are widely used to represent complex causal systems. Since the basic task of learning such a model from data is NP-hard, a standard approach is greedy search over the space of directed acyclic graphs or Markov equivalence classes of directed acyclic graphs. As the space of directed acyclic graphs on p nodes and the associated space of Markov equivalence classes are both much larger than the space of permutations, it is desirable to consider permutation-based greedy searches. Here, we provide the first consistency guarantees, both uniform and high-dimensional, of a greedy permutation-based search. This search corresponds to a simplex-like algorithm operating over the edge-graph of a subpolytope of the permutohedron, called a directed acyclic graph associahedron. Every vertex in this polytope is associated with a directed acyclic graph, and hence with a collection of permutations that are consistent with the directed acyclic graph ordering. A walk is performed on the edges of the polytope maximizing the sparsity of the associated directed acyclic graphs. We show via simulated and real data that this permutation search is competitive with current approaches. 
    more » « less
  2. We consider the problem of identifying a conditional causal effect through covariate adjustment. We focus on the setting where the causal graph is known up to one of two types of graphs: a maximally oriented partially directed acyclic graph (MPDAG) or a partial ancestral graph (PAG). Both MPDAGs and PAGs represent equivalence classes of possible underlying causal models. After defining adjustment sets in this setting, we provide a necessary and sufficient graphical criterion – the conditional adjustment criterion – for finding these sets under conditioning on variables unaffected by treatment. We further provide explicit sets from the graph that satisfy the conditional adjustment criterion, and therefore, can be used as adjustment sets for conditional causal effect identification. 
    more » « less
  3. In constraint-based causal discovery, the existing algorithms systematically use a series of conditional independence (CI) relations observed in the data to recover an equivalence class of causal graphs in the large sample limit. One limitation of these algorithms is that CI tests lose statistical power as conditioning set size increases with finite samples. Recent research proposes to limit the conditioning set size for robust causal discovery. However, the existing algorithms require exhaustive testing of all CI relations with conditioning set sizes up to a certain integer k. This becomes problematic in practice when variables with large support are present, as it makes CI tests less reliable due to near-deterministic relationships, thereby violating the faithfulness assumption. To address this issue, we propose a causal discovery algorithm that only uses CI tests where the conditioning sets are restricted to a given set of conditioning sets including the empty set C. We call such set of CI relations IC conditionally closed. We define the notion of C-Markov equivalence: two causal graphs are C-Markov equivalent if they entail the same set of CI constraints from IC. We propose a graphical representation of C-Markov equivalence and characterize such equivalence between two causal graphs. Our proposed algorithm called the C-PC algorithm is sound for learning the C-Markov equivalence class. We demonstrate the utility of the proposed algorithm via synthetic and real-world experiments in scenarios where variables with large support or high correlation are present in the data. Our source code is available online at github.com/kenneth-lee-ch/cpc. 
    more » « less
  4. We establish conditions under which latent causal graphs are nonparametrically identifiable and can be reconstructed from unknown interventions in the latent space. Our primary focus is the identification of the latent structure in a measurement model, i.e. causal graphical models where dependence between observed variables is insignificant compared to dependence between latent representations, without making parametric assumptions such as linearity or Gaussianity. Moreover, we do not assume the number of hidden variables is known, and we show that at most one unknown intervention per hidden variable is needed. This extends a recent line of work on learning causal representations from observations and interventions. The proofs are constructive and introduce two new graphical concepts -- imaginary subsets and isolated edges -- that may be useful in their own right. As a matter of independent interest, the proofs also involve a novel characterization of the limits of edge orientations within the equivalence class of DAGs induced by unknown interventions. Experiments confirm that the latent graph can be recovered from data using our theoretical results. These are the first results to characterize the conditions under which causal representations are identifiable without making any parametric assumptions in a general setting with unknown interventions and without faithfulness. 
    more » « less
  5. Abstract Bayesian networks have been widely used to generate causal hypotheses from multivariate data. Despite their popularity, the vast majority of existing causal discovery approaches make the strong assumption of a (partially) homogeneous sampling scheme. However, such assumption can be seriously violated, causing significant biases when the underlying population is inherently heterogeneous. To this end, we propose a novel causal Bayesian network model, termed BN-LTE, that embeds heterogeneous samples onto a low-dimensional manifold and builds Bayesian networks conditional on the embedding. This new framework allows for more precise network inference by improving the estimation resolution from the population level to the observation level. Moreover, while causal Bayesian networks are in general not identifiable with purely observational, cross-sectional data due to Markov equivalence, with the blessing of causal effect heterogeneity, we prove that the proposed BN-LTE is uniquely identifiable under relatively mild assumptions. Through extensive experiments, we demonstrate the superior performance of BN-LTE in causal structure learning as well as inferring observation-specific gene regulatory networks from observational data. 
    more » « less