skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conditional Adjustment in a Markov Equivalence Class
We consider the problem of identifying a conditional causal effect through covariate adjustment. We focus on the setting where the causal graph is known up to one of two types of graphs: a maximally oriented partially directed acyclic graph (MPDAG) or a partial ancestral graph (PAG). Both MPDAGs and PAGs represent equivalence classes of possible underlying causal models. After defining adjustment sets in this setting, we provide a necessary and sufficient graphical criterion – the conditional adjustment criterion – for finding these sets under conditioning on variables unaffected by treatment. We further provide explicit sets from the graph that satisfy the conditional adjustment criterion, and therefore, can be used as adjustment sets for conditional causal effect identification.  more » « less
Award ID(s):
2210210
PAR ID:
10524041
Author(s) / Creator(s):
;
Publisher / Repository:
PMLR
Date Published:
Format(s):
Medium: X
Location:
https://proceedings.mlr.press/v238/laplante24a/laplante24a.pdf
Sponsoring Org:
National Science Foundation
More Like this
  1. Identifying the causal pathways of unfairness is a critical objective for improving policy design and algorithmic decision-making. Prior work in causal fairness analysis often requires knowledge of the causal graph, hindering practical applications in complex or low-knowledge domains. Moreover, global discovery methods that learn causal structure from data can display unstable performance on finite samples, preventing robust fairness conclusions. To mitigate these challenges, we introduce local discovery for direct discrimination (LD3): a method that uncovers structural evidence of direct unfairness by identifying the causal parents of an outcome variable. LD3 performs a linear number of conditional independence tests relative to variable set size, and allows for latent confounding under the sufficient condition that all parents of the outcome are observed. We show that LD3 returns a valid adjustment set (VAS) under a new graphical criterion for the weighted controlled direct effect, a qualitative indicator of direct discrimination. LD3 limits unnecessary adjustment, providing interpretable VAS for assessing unfairness. We use LD3 to analyze causal fairness in two complex decision systems: criminal recidivism prediction and liver transplant allocation. LD3 was more time-efficient and returned more plausible results on real-world data than baselines, which took 46× to 5870× longer to execute. 
    more » « less
  2. Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs (DAGs) is well studied. However, the corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output. In this work, we bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome. We derive influence function based estimators that exhibit double robustness for the identified effects in a large class of hidden variable DAGs where the treatment satisfies a simple graphical criterion; this class includes models yielding the adjustment and front-door functionals as special cases. We also provide necessary and sufficient conditions under which the statistical model of a hidden variable DAG is nonparametrically saturated and implies no equality constraints on the observed data distribution. Further, we derive an important class of hidden variable DAGs that imply observed data distributions observationally equivalent (up to equality constraints) to fully observed DAGs. In these classes of DAGs, we derive estimators that achieve the semiparametric efficiency bounds for the target of interest where the treatment satisfies our graphical criterion. Finally, we provide a sound and complete identification algorithm that directly yields a weight based estimation strategy for any identifiable effect in hidden variable causal models. 
    more » « less
  3. Li, Yingzhen; Mandt, Stephan; Agrawal, Shipra; Khan, Emtiyaz (Ed.)
    We study the problem of causal effect estimation in the presence of unobserved confounders, focusing on two settings: instrumental variable (IV) regression with additional observed confounders, and proxy causal learning. Our approach uses a singular value decomposition of a conditional expectation operator combined with a saddle-point optimization method. In the IV regression setting, this can be viewed as a neural network generalization of the seminal approach due to Darolles et al. (2011). Saddle-point formulations have recently gained attention because they mitigate the double-sampling bias and are compatible with modern function approximation methods. We provide experimental validation across various settings and show that our approach outperforms existing methods on common benchmarks. 
    more » « less
  4. Real-world data often violates the equal-variance assumption (homoscedasticity), making it essential to account for heteroscedastic noise in causal discovery. In this work, we explore heteroscedastic symmetric noise models (HSNMs), where the effect Y is modeled as Y = f(X) + σ(X)N, with X as the cause and N as independent noise following a symmetric distribution. We introduce a novel criterion for identifying HSNMs based on the skewness of the score (i.e., the gradient of the log density) of the data distribution. This criterion establishes a computationally tractable measurement that is zero in the causal direction but nonzero in the anticausal direction, enabling the causal direction discovery. We extend this skewness-based criterion to the multivariate setting and propose SkewScore, an algorithm that handles heteroscedastic noise without requiring the extraction of exogenous noise. We also conduct a case study on the robustness of SkewScore in a bivariate model with a latent confounder, providing theoretical insights into its performance. Empirical studies further validate the effectiveness of the proposed method. 
    more » « less
  5. Vasant Honavar and Matthijs Spaan (Ed.)
    This paper addresses the problem of estimating causal effects when adjustment variables in the back-door or front-door criterion are partially observed. For such scenarios, we derive bounds on the causal effects by solving two non-linear optimization problems, and demonstrate that the bounds are sufficient. Using this optimization method, we propose a framework for dimensionality reduction that allows one to trade bias for estimation power, and demonstrate its performance using simulation studies. 
    more » « less