A bstract We study a renormalizable model of Dirac fermion dark matter (DM) that communicates with the Standard Model (SM) through a pair of mediators — one scalar, one fermion — in the representation ( 6 , 1 , $$ \frac{4}{3} $$ 4 3 ) of the SM gauge group SU(3) c × SU(2) L × U(1) Y . While such assignments preclude direct coupling of the dark matter to the Standard Model at tree level, we examine the many effective operators generated at one-loop order when the mediators are heavy, and find that they are often phenomenologically relevant. We reinterpret dijet and pair-produced resonance and jets + $$ {E}_{\mathrm{T}}^{\mathrm{miss}} $$ E T miss searches at the Large Hadron Collider (LHC) in order to constrain the mediator sector, and we examine an array of DM constraints ranging from the observed relic density Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 to indirect and direct searches for dark matter. Tree-level annihilation, available for DM masses starting at the TeV scale, is required in order to produce Ω χ $$ {h}_{\mathrm{Planck}}^2 $$ h Planck 2 through freeze-out, but loops — led by the dimension-five DM magnetic dipole moment — are nonetheless able to produce signals large enough to be constrained, particularly by the XENON1T experiment. In some benchmarks, we find a fair amount of parameter space left open by experiment and compatible with freeze-out. In other scenarios, however, the open space is quite small, suggesting a need for further model-building and/or non-standard cosmologies.
more »
« less
Dark matter freeze-out during SU(2)L confinement
A bstract We explore the possibility that dark matter is a pair of vector-like fermionic SU(2) L doublets and propose a novel mechanism of dark matter production that proceeds through the confinement of the weak sector of the Standard Model. This confinement phase causes the Standard Model doublets and dark matter to confine into pions. The dark pions freeze-out before the weak sector deconfines and generate a relic abundance of dark matter. We solve the Boltzmann equations for this scenario to determine the scale of confinement and constituent dark matter mass required to produce the observed relic density. We determine which regions of this parameter space evade direct detection, collider bounds, and successfully produce the observed relic density of dark matter. For a TeV scale pair of vector-like fermionic SU(2) L doublets, we find the weak confinement scale to be ∼ 700 TeV.
more »
« less
- Award ID(s):
- 1915005
- PAR ID:
- 10346117
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 2
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract We consider theories in which a dark sector is described by a Conformal Field Theory (CFT) over a broad range of energy scales. A coupling of the dark sector to the Standard Model breaks conformal invariance. While weak at high energies, the breaking grows in the infrared, and at a certain energy scale the theory enters a confined (hadronic) phase. One of the hadronic excitations can play the role of dark matter. We study a “Conformal Freeze-In” cosmological scenario, in which the dark sector is populated through its interactions with the SM at temperatures when it is conformal. In this scenario, the dark matter relic density is determined by the CFT data, such as the dimension of the CFT operator coupled to the Standard Model. We show that this simple and highly predictive model of dark matter is phenomenologically viable. The observed relic density is reproduced for a variety of SM operators (“portals”) coupled to the CFT, and the resulting models are consistent with observational constraints. The mass of the COFI dark matter candidate is predicted to be in the keV-MeV range.more » « less
-
In this paper, we investigate the discovery prospect of simplified fermionic dark sectors models through Higgs precision measurements at e+e- colliders and direct searches at hadron colliders. These models extend the Standard Model with two Majorana or Dirac fermions that are singlets, doublets or triplets under the weak SU(2) group. For all models, we consider two scenarios where the lightest new fermion is either stable, or where it decays into other visible final states. For the Higgs precision observables we primarily focus on σ(e+e-→ZH), which can deviate from the Standard Model through one-loop corrections involving the new fermions. Deviations of 0.5% or more, which could be observable at future e+e- colliders, are found for TeV-scale dark sector masses. By combining the constraints from the oblique parameters, Br(H→γγ), and direct production of the new fermions at the LHC, a comprehensive understanding of the discovery potential of these models can be achieved. In both scenarios, there exist some parameter regions where the Higgs precision measurements can provide complementary information to direct LHC searches.more » « less
-
A bstract Light dark sectors in thermal contact with the Standard Model can naturally produce the observed relic dark matter abundance and are the targets of a broad experimental search program. A key light dark sector model is the pseudo-Dirac fermion with a dark photon mediator. The dynamics of the fermionic excited states are often neglected. We consider scenarios in which a nontrivial abundance of excited states is produced and their subsequent de-excitation yields interesting electromagnetic signals in direct detection experiments. We study three mechanisms of populating the excited state: a primordial excited fraction, a component up-scattered in the Sun, and a component up-scattered in the Earth. We find that the fractional abundance of primordial excited states is generically depleted to exponentially small fractions in the early universe. Nonetheless, this abundance can produce observable signals in current dark matter searches. MeV-scale dark matter with thermal cross sections and higher can be probed by down-scattering following excitation in the Sun. Up-scatters of GeV-scale dark matter in the Earth can give rise to signals in current and upcoming terrestrial experiments and X-ray observations. We comment on the possible relevance of these scenarios to the recent excess in XENON1T.more » « less
-
null (Ed.)A bstract Higgs portal models are the most minimal way to explain the relic abundance of the Universe. They add just a singlet that only couples to the Higgs through a single parameter that controls both the dark matter relic abundance and the direct detection cross-section. Unfortunately this scenario, either with scalar or fermionic dark matter, is almost ruled out by the latter. In this paper we analyze the Higgs-portal idea with fermionic dark matter in the context of a 2HDM. By disentangling the couplings responsible for the correct relic density from those that control the direct detection cross section we are able to open the parameter space and find wide regions consistent with both the observed relic density and all the current bounds.more » « less