skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: College Instructors’ Perceptions of Barriers & Drivers that Impact the Implementation of Active Learning
College mathematics instruction that leverages evidence-based instructional practices, such as productive group work, can lead to many positive outcomes for students. In order to support instructors in adopting more evidence-based instructional practices, it is important to understand what barriers and drivers can impact their decision to implement such practices. In this study, we interviewed four introductory mathematics instructors teaching the same course in order to understand, in context, what aspects served as barriers and drivers. Transcripts were analyzed using thematic analysis. Initial results highlight how course coordination and weekly project meetings served as drivers, and the impact of the pandemic was seen as both a driver and a barrier to implementing evidence-based instructional practices.  more » « less
Award ID(s):
2116187
PAR ID:
10463967
Author(s) / Creator(s):
; ;
Editor(s):
Lischka, A. E.; Dyer, E. B.; Jones, R. S.; Lovett, J. N.; Strayer, J.; Drown, S.
Date Published:
Journal Name:
Proceedings of the forty-fourth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Research-based assessments (RBAs; e.g., the Force Concept Inventory) that measure student content knowledge, attitudes, or identities have played a major role in transforming physics teaching practices. RBAs offer instructors a standardized method for empirically investigating the efficacy of their instructional practices and documenting the impacts of course transformations. Unlike course exams, the common usage of standardized RBAs across institutions uniquely supports instructors to compare their student outcomes over time or against multi-institutional data sets. While the number of RBAs and RBA-using instructors has increased over the last three decades, barriers to administering RBAs keep many physics instructors from using them.1,2 To mitigate these barriers, we have created full-service online RBA platforms (i.e., the Learning About STEM Student Outcomes [LASSO],3 Colorado Learning Attitudes About Science Survey for Experimental Physics [E-CLASS],4 and Physics Lab Inventory of Critical thinking [PLIC]5 platforms) that host, administer, score, and analyze RBAs. These web-based platforms can make it easier for instructors to use RBAs, especially as many courses have been forced to transition to online instruction. We hope that this editorial can serve as a guide for instructors considering administering RBAs online. In what follows, we examine common barriers to using RBAs, how online administration can remove those barriers, and the research into online administration of RBAs. In the supplementary material,6 we also include a practical how-to for administering RBAs online and sample student email wording. 
    more » « less
  2. null (Ed.)
    Research-based assessments (RBAs; e.g., the Force Concept Inventory) that measure student content knowledge, attitudes, or identities have played a major role in transforming physics teaching practices. RBAs offer instructors a standardized method for empirically investigating the efficacy of their instructional practices and documenting the impacts of course transformations. Unlike course exams, the common usage of standardized RBAs across institutions uniquely supports instructors to compare their student outcomes over time or against multi-institutional data sets. While the number of RBAs and RBA-using instructors has increased over the last three decades, barriers to administering RBAs keep many physics instructors from using them.1,2 To mitigate these barriers, we have created full-service online RBA platforms (i.e., the Learning About STEM Student Outcomes [LASSO],3 Colorado Learning Attitudes About Science Survey for Experimental Physics [E-CLASS],4 and Physics Lab Inventory of Critical thinking [PLIC]5 platforms) that host, administer, score, and analyze RBAs. These web-based platforms can make it easier for instructors to use RBAs, especially as many courses have been forced to transition to online instruction. We hope that this editorial can serve as a guide for instructors considering administering RBAs online. In what follows, we examine common barriers to using RBAs, how online administration can remove those barriers, and the research into online administration of RBAs. In the supplementary material,6 we also include a practical how-to for administering RBAs online and sample student email wording. 
    more » « less
  3. Large enrollment, introductory science and engineering classes at research universities are frequently the subject of Discipline-Based Education Research projects and are commonly taught by non-tenure track faculty. However, tenure-track and nontenure-track faculty may encounter different institutional structures that impact their implementation of, or intention to use, evidence-based instructional practices. We used a multiple nested case study framed by the Teacher-Centered Systemic Reform model to identify structural, cultural, and personal components of reform that differed by faculty position and home academic department in the context of a discipline based education research project. Structural, cultural, and personal drivers and barriers to reform differed between position types and among departments but there were interactions between these two effects, suggesting both need to be considered in reform efforts and research projects. Overall, involvement in the discipline-based education research project served as a positive experience, addressed barriers and enhanced drivers for adopting EBIP. Our study highlights factors that promote and prevent the integration of evidence-based practices, and we suggest that involvement in discipline-based education research can encourage the adoption of student-centered pedagogy in science and engineering classes. 
    more » « less
  4. Abstract Many conversations surrounding improvement of large‐enrollment college science, technology, engineering & mathematics (STEM) courses focus primarily (or solely) on changing instructional practices. By reducing dynamic, complex learning environments to collections of teaching methods, we neglect other meaningful parts of a course ecosystem (e.g., curriculum, assessments). Here, we advocate extending STEM education reform conversations beyond “active versus passive learning.” We argue communities of researchers and instructors would be better served if what we teach and assess was discussed alongside how we teach. To enable nuanced conversations about the characteristics of learning environments that support students in explaining phenomena, we defined a model of college STEM learning environments which attends to the intellectual work emphasized and rewarded on exams (i.e., assessment emphasis), what is taught in whole‐class meetings (i.e., instructional emphasis), and how those meetings are enacted (i.e., instructional practices). We subsequently characterized three distinct chemistry courses and qualitatively examined the characteristics of chemistry learning environments that effectively supported students in explaining why a beaker of water warms as a white solid dissolves. Furthermore, we quantitatively investigated the extent to which measures of incoming preparation explained variance in students’ explanations relative to enrollment in each learning environment. Our findings demonstrate that learning environments that effectively supported learners in explaining dissolution emphasized how and why salts dissolve in‐class and on assessments. Changing teaching methods in an otherwise traditionally structured course (i.e., a course organized by topics that primarily assesses math and recall) did not appear to impact the sophistication of students’ explanations. Additionally, we observed that learning environment enrollment explained substantially more of the variance observed in students’ explanations than measures of precollege math preparation. This finding suggests that emphasizing and rewarding the construction of causal accounts for phenomena in‐class and on assessments may support more equitable achievement. 
    more » « less
  5. Instructors’ interactions can foster knowledge sharing around teaching and the use of research-based instructional strategies (RBIS). Coordinated teaching presents an impetus for instructors’ interactions and creates opportunities for instructional improvement but also potentially limits an instructor’s autonomy. In this study, we sought to characterize the extent of coordination present in introductory undergraduate courses and to understand how departments and instructors implement and experience course coordination. We examined survey data from 3,641 chemistry, mathematics, and physics instructors at three institution types and conducted follow-up interviews with a subset of 24 survey respondents to determine what types of coordination existed, what factors led to coordination, how coordination constrained instruction, and how instructors maintained autonomy within coordinated contexts. We classified three approaches to coordination at both the overall course and course component levels: independent (i.e., not coordinated), collaborative (decision-making by instructor and others), controlled (decision-making by others, not instructor). Two course components, content coverage and textbooks, were highly coordinated. These curricular components were often decided through formal or informal committees, but these decisions were seldom revisited. This limited the ability for instructors to participate in the decision-making process, the level of interactions between instructors, and the pedagogical growth that could have occurred through these conversations. Decision-making around the other two course components, instructional methods and exams, was more likely to be independently determined by the instructors, who valued this autonomy. Participants in the study identified various ways in which collaborative coordination of courses can promote but also inhibit pedagogical growth. Our findings indicate that the benefits of collaborative course coordination can be realized when departments develop coordinated approaches that value each instructor’s autonomy, incorporate shared and ongoing decision-making, and facilitate collaborative interactions and knowledge sharing among instructors. 
    more » « less