ABSTRACT In this paper, we construct the circular velocity curve of the Milky Way out to ∼30 kpc, providing an updated model of the dark matter density profile. We derive precise parallaxes for 120 309 stars with a data-driven model, using APOGEE DR17 spectra combined with GaiaDR3, 2MASS, and WISE photometry. At outer galactic radii up to 30 kpc, we find a significantly faster decline in the circular velocity curve compared to the inner parts. This decline is better fit with a cored Einasto profile with a slope parameter $$0.91^{+0.04}_{-0.05}$$ than a generalized Navarro–Frenk–White (NFW) profile. The virial mass of the best-fitting dark matter halo profile is only $$1.81^{+0.06}_{-0.05}\times 10^{11}$$ M⊙, significantly lower than what a generalized NFW profile delivers. We present a study of the potential systematics, affecting mainly large radii. Such a low mass for the Galaxy is driven by the functional forms tested, given that it probes beyond our measurements. It is found to be in tension with mass measurements from globular clusters, dwarf satellites, and streams. Our best-fitting profile also lowers the expected dark matter annihilation signal flux from the galactic centre by more than an order of magnitude, compared to an NFW profile-fit. In future work, we will explore profiles with more flexible functional forms to more fully leverage the circular velocity curve and observationally constrain the properties of the Milky Way’s dark matter halo.
more »
« less
The Odd Dark Matter Halos of Isolated Gas-rich Ultradiffuse Galaxies
Abstract We analyze circular velocity profiles of seven ultradiffuse galaxies (UDGs) that are isolated and gas-rich. Assuming that the dark matter halos of these UDGs have a Navarro–Frenk–White (NFW) density profile or a Read density profile (which allows for constant-density cores), the inferred halo concentrations are systematically lower than the cosmological median, even as low as −0.6 dex (about 5 σ away) in some cases. Alternatively, similar fits can be obtained with a density profile that scales roughly as 1/ r 2 for radii larger than a few kiloparsecs. Both solutions require the radius where the halo circular velocity peaks ( R max ) to be much larger than the median expectation. Surprisingly, we find an overabundance of such large- R max halos in the IllustrisTNG dark-matter-only simulations compared to the Gaussian expectation. These halos form late and have higher spins compared to median halos of similar masses. The inner densities of the most extreme among these late-forming halos are higher than their NFW counterparts, leading to a ∼1/ r 2 density profile. However, the two well-resolved UDGs in our sample strongly prefer lower dark matter densities in the center than the simulated ones. Comparing to IllustrisTNG hydrodynamical simulations, we also find a tension in getting both low enough circular velocities and high enough halo mass to accommodate the measurements. Our results indicate that the gas-rich UDGs present a significant challenge for galaxy formation models.
more »
« less
- PAR ID:
- 10464011
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 936
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 166
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We explore the isothermal total density profiles of early-type galaxies (ETGs) in the IllustrisTNG simulation. For the selected 559 ETGs at z = 0 with stellar masses $$10^{10.7}\, \mathrm{M}_{\odot } \leqslant M_{\ast } \leqslant 10^{11.9}\, \mathrm{M}_{\odot }$$, the total power-law slope has a mean of 〈γ′〉 = 2.011 ± 0.007 and a scatter of $$\sigma _{\gamma ^{\prime }} = 0.171$$ over the radial range 0.4–4 times the stellar half-mass radius. Several correlations between γ′ and galactic properties including stellar mass, effective radius, stellar surface density, central velocity dispersion, central dark matter fraction, and in situ-formed stellar mass ratio are compared to observations and other simulations, revealing that IllustrisTNG reproduces many correlation trends, and in particular, γ′ is almost constant with redshift below z = 2. Through analysing IllustrisTNG model variations, we show that black hole kinetic winds are crucial to lowering γ′ and matching observed galaxy correlations. The effects of stellar winds on γ′ are subdominant compared to active galactic nucleus (AGN) feedback, and differ due to the presence of AGN feedback from previous works. The density profiles of the ETG dark matter haloes are well described by steeper than NFW profiles, and they are steeper in the full physics (FP) run than their counterparts in the dark matter-only (DMO) run. Their inner density slopes anticorrelate (remain constant) with the halo mass in the FP (DMO) run, and anticorrelate with the halo concentration parameter c200 in both the types of runs. The dark matter haloes of low-mass ETGs are contracted whereas high-mass ETGs are expanded, suggesting that variations in the total density profile occur through the different halo responses to baryons.more » « less
-
The mass profiles of massive dark matter halos are highly sensitive to the nature of dark matter and potential modifications of the theory of gravity on large scales. The Λ cold dark matter (CDM) paradigm makes strong predictions on the shape of dark matter halos and on the dependence of the shape parameters on halo mass, such that any deviation from the predicted universal shape would have important implications for the fundamental properties of dark matter. Here we use a set of 12 galaxy clusters with available deep X-ray and Sunyaev–Zel’dovich data to constrain the shape of the gravitational field with an unprecedented level of precision over two decades in radius. We introduce a nonparametric framework to reconstruct the shape of the gravitational field under the assumption of hydrostatic equilibrium and compare the resulting mass profiles to the expectations of Navarro–Frenk–White (NFW) and Einasto parametric mass profiles. On average, we find that the NFW profile provides an excellent description of the recovered mass profiles, with deviations of less than 10% over a wide radial range. However, there appears to be more diversity in the shape of individual profiles than can be captured by the NFW model. The average NFW concentration and its scatter agree very well with the prediction of the ΛCDM framework. For a subset of systems, we disentangle the gravitational field into the contribution of baryonic components (gas, brightest cluster galaxy, and satellite galaxies) and that of dark matter. The stellar content dominates the gravitational field inside ∼0.02 R 500 but is responsible for only 1–2% of the total gravitational field inside R 200 . The total baryon fraction reaches the cosmic value at R 200 and slightly exceeds it beyond this point, possibly indicating a mild level of nonthermal pressure support (10 − 20%) in cluster outskirts. Finally, the relation between observed and baryonic acceleration exhibits a complex shape that strongly departs from the radial acceleration relation in spiral galaxies, which shows that the aforementioned relation does not hold at the galaxy-cluster scale.more » « less
-
null (Ed.)ABSTRACT The splashback radius, Rsp, is a physically motivated halo boundary that separates infalling and collapsed matter of haloes. We study Rsp in the hydrodynamic and dark matter-only IllustrisTNG simulations. The most commonly adopted signature of Rsp is the radius at which the radial density profiles are steepest. Therefore, we explicitly optimize our density profile fit to the profile slope and find that this leads to a $$\sim 5{{\ \rm per\ cent}}$$ larger radius compared to other optimizations. We calculate Rsp for haloes with masses between 1013 and 15 M⊙ as a function of halo mass, accretion rate, and redshift. Rsp decreases with mass and with redshift for haloes of similar M200 m in agreement with previous work. We also find that Rsp/R200 m decreases with halo accretion rate. We apply our analysis to dark matter, gas, and satellite galaxies associated with haloes to investigate the observational potential of Rsp. The radius of steepest slope in gas profiles is consistently smaller than the value calculated from dark matter profiles. The steepest slope in galaxy profiles, which are often used in observations, tends to agree with dark matter profiles but is lower for less massive haloes. We compare Rsp in hydrodynamic and N-body dark matter-only simulations and do not find a significant difference caused by the addition of baryonic physics. Thus, results from dark matter-only simulations should be applicable to realistic haloes.more » « less
-
Abstract We present theoretical expectations for infall toward supercluster-scale cosmological filaments, motivated by the Arecibo Pisces–Perseus Supercluster Survey (APPSS) to map the velocity field around the Pisces–Perseus Supercluster (PPS) filament. We use a minimum spanning tree applied to dark matter halos the size of galaxy clusters to identify 236 large filaments within the Millennium simulation. Stacking the filaments along their principal axes, we determine a well-defined, sharp-peaked velocity profile function that can be expressed in terms of the maximum infall rate V max and the distance ρ max between the location of maximum infall and the principal axis of the filament. This simple, two-parameter functional form is surprisingly universal across a wide range of linear mass densities. V max is positively correlated with the halo mass per length along the filament, and ρ max is negatively correlated with the degree to which the halos are concentrated along the principal axis. We also assess an alternative, single-parameter method using V 25 , the infall rate at a distance of 25 Mpc from the axis of the filament. Filaments similar to the PPS have V max = 612 ± 116 km s −1 , ρ max = 8.9 ± 2.1 Mpc, and V 25 = 329 ± 68 km s −1 . We create mock observations to model uncertainties associated with viewing angle, lack of three-dimensional velocity information, limited sample size, and distance uncertainties. Our results suggest that it would be especially useful to measure infall for a larger sample of filaments to test our predictions for the shape of the infall profile and the relationships among infall rates and filament properties.more » « less
An official website of the United States government

