skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Discriminative Self-Paced Group-Metric Adaptation for Online Visual Identification
Existing solutions to instance-level visual identification usually aim to learn faithful and discriminative feature extractors from offline training data and directly use them for the unseen online testing data. However, their performance is largely limited due to the severe distribution shifting issue between training and testing samples. Therefore, we propose a novel online group-metric adaptation model to adapt the offline learned identification models for the online data by learning a series of metrics for all sharing-subsets. Each sharing-subset is obtained from the proposed novel frequent sharing-subset mining module and contains a group of testing samples that share strong visual similarity relationships to each other. Furthermore, to handle potentially large-scale testing samples, we introduce self-paced learning (SPL) to gradually include samples into adaptation from easy to difficult which elaborately simulates the learning principle of humans. Unlike existing online visual identification methods, our model simultaneously takes both the sample-specific discriminant and the set-based visual similarity among testing samples into consideration. Our method is generally suitable to any off-the-shelf offline learned visual identification baselines for online performance improvement which can be verified by extensive experiments on several widely-used visual identification benchmarks.  more » « less
Award ID(s):
1815561
PAR ID:
10464212
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Pattern Analysis and Machine Intelligence
Volume:
45
Issue:
4
ISSN:
0162-8828
Page Range / eLocation ID:
4368 - 4383
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Person Re-IDentification (P-RID), as an instance-level recognition problem, still remains challenging in computer vision community. Many P-RID works aim to learn faithful and discriminative features/metrics from offline training data and directly use them for the unseen online testing data. However, their performance is largely limited due to the severe data shifting issue between training and testing data. Therefore, we propose an online joint multi-metric adaptation model to adapt the offline learned P-RID models for the online data by learning a series of metrics for all the sharing-subsets. Each sharing-subset is obtained from the proposed novel frequent sharing-subset mining module and contains a group of testing samples which share strong visual similarity relationships to each other. Unlike existing online P-RID methods, our model simultaneously takes both the sample-specific discriminant and the set-based visual similarity among testing samples into consideration so that the adapted multiple metrics can refine the discriminant of all the given testing samples jointly via a multi-kernel late fusion framework. Our proposed model is generally suitable to any offline learned P-RID baselines for online boosting, the performance improvement by our model is not only verified by extensive experiments on several widely-used P-RID benchmarks (CUHK03, Market1501, DukeMTMC-reID and MSMT17) and state-of-the-art P-RID baselines but also guaranteed by the provided in-depth theoretical analyses. 
    more » « less
  2. Existing visual instance retrieval (VIR) approaches attempt to learn a faithful global matching metric or discriminative feature embedding offline to cover enormous visual appearance variations, so as to directly use it online on various unseen probes for retrieval. However, their requirement for a huge set of positive training pairs is very demanding in practice and the performance is largely constrained for the unseen testing samples due to the severe data shifting issue. In contrast, this paper advocates a different paradigm: part of the learning can be performed online but with nominal costs, so as to achieve online metric adaptation for different query probes. By exploiting easily-available negative samples, we propose a novel solution to achieve the optimal local metric adaptation effectively and efficiently. The insight of our method is the local hard negative samples can actually provide tight constraints to fine tune the metric locally. Our local metric adaptation method is generally applicable to be used on top of any offline-learned baselines. In addition, this paper gives in-depth theoretical analyses of the proposed method to guarantee the reduction of the classification error both asymptotically and practically. Extensive experiments on various VIR tasks have confirmed our effectiveness and superiority. 
    more » « less
  3. Path guiding is a promising technique to reduce the variance of path tracing. Although existing online path guiding algorithms can eventually learn good sampling distributions given a large amount of time and samples, the speed of learning becomes a major bottleneck. In this paper, we accelerate the learning of sampling distributions by training a light-weight neural network offline to reconstruct from sparse samples. Uniquely, we design our neural network to directly operate convolutions on a sparse quadtree, which regresses a high-quality hierarchical sampling distribution. Our approach can reconstruct reasonably accurate sampling distributions faster, allowing for efficient path guiding and rendering. In contrast to the recent offline neural path guiding techniques that reconstruct low-resolution 2D images for sampling, our novel hierarchical framework enables more fine-grained directional sampling with less memory usage, effectively advancing the practicality and efficiency of neural path guiding. In addition, we take advantage of hybrid bidirectional samples including both path samples and photons, as we have found this more robust to different light transport scenarios compared to using only one type of sample as in previous work. Experiments on diverse testing scenes demonstrate that our approach often improves rendering results with better visual quality and lower errors. Our framework can also provide the proper balance of speed, memory cost, and robustness. 
    more » « less
  4. Recently, there has been a growing interest in developing machine learning (ML) models that can promote fairness, i.e., eliminating biased predictions towards certain populations (e.g., individuals from a specific demographic group). Most existing works learn such models based on well-designed fairness constraints in optimization. Nevertheless, in many practical ML tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance. This is because existing fairness constraints are designed to restrict the prediction disparity among different sensitive groups, but with few samples, it becomes difficult to accurately measure the disparity, thus rendering ineffective fairness optimization. In this paper, we define the fairness-aware learning task with limited training samples as the fair few-shot learning problem. To deal with this problem, we devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks. To compensate for insufficient training samples, we propose an essential strategy to select and leverage an auxiliary set for each meta-test task. These auxiliary sets contain several labeled training samples that can enhance the model performance regarding fairness in meta-test tasks, thereby allowing for the transfer of learned useful fairness-oriented knowledge to meta-test tasks. Furthermore, we conduct extensive experiments on three real-world datasets to validate the superiority of our framework against the state-of-the-art baselines. 
    more » « less
  5. Liu, Karen; Kulic, Dana; Ichnowski, Jeff (Ed.)
    In this work, we consider the task of improving the accuracy of dynamic models for model predictive control (MPC) in an online setting. Although prediction models can be learned and applied to model-based controllers, these models are often learned offline. In this offline setting, training data is first collected and a prediction model is learned through an elaborated training procedure. However, since the model is learned offline, it does not adapt to disturbances or model errors observed during deployment. To improve the adaptiveness of the model and the controller, we propose an online dynamics learning framework that continually improves the accuracy of the dynamic model during deployment. We adopt knowledge-based neural ordinary differential equations (KNODE) as the dynamic models, and use techniques inspired by transfer learning to continually improve the model accuracy. We demonstrate the efficacy of our framework with a quadrotor, and verify the framework in both simulations and physical experiments. Results show that our approach can account for disturbances that are possibly time-varying, while maintaining good trajectory tracking performance. 
    more » « less