Abstract We propose a novel and unified framework for change-point estimation in multivariate time series. The proposed method is fully non-parametric, robust to temporal dependence and avoids the demanding consistent estimation of long-run variance. One salient and distinct feature of the proposed method is its versatility, where it allows change-point detection for a broad class of parameters (such as mean, variance, correlation and quantile) in a unified fashion. At the core of our method, we couple the self-normalisation- (SN) based tests with a novel nested local-window segmentation algorithm, which seems new in the growing literature of change-point analysis. Due to the presence of an inconsistent long-run variance estimator in the SN test, non-standard theoretical arguments are further developed to derive the consistency and convergence rate of the proposed SN-based change-point detection method. Extensive numerical experiments and relevant real data analysis are conducted to illustrate the effectiveness and broad applicability of our proposed method in comparison with state-of-the-art approaches in the literature.
more »
« less
Test of change point versus long‐range dependence in functional time series
In the context of functional time series, we propose a significance test to distinguish between short memory with a change point and long range dependence. The test is based on coefficients of projections onto an optimal direction that captures the dependence structure of the latent stationary functions that are not observable due to a potential change point. The optimal direction must be estimated as well. The test statistic is constructed using the local Whittle estimator applied to these coefficients. It has standard normal distribution under the null hypothesis (change point) and diverges to infinity under the alternative (long range dependence). The article includes asymptotic theory, a simulation study and an application to curve‐valued time series derived from intraday asset prices.
more »
« less
- Award ID(s):
- 2123761
- PAR ID:
- 10464216
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Time Series Analysis
- ISSN:
- 0143-9782
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Change point detection is widely used for finding transitions between states of data generation within a time series. Methods for change point detection currently assume this transition is instantaneous and therefore focus on finding a single point of data to classify as a change point. However, this assumption is flawed because many time series actually display short periods of transitions between different states of data generation. Previous work has shown Bayesian Online Change Point Detection (BOCPD) to be the most effective method for change point detection on a wide range of different time series. This paper explores adapting the change point detection algorithms to detect abrupt changes over short periods of time. We design a segment-based mechanism to examine a window of data points within a time series, rather than a single data point, to determine if the window captures abrupt change. We test our segment-based Bayesian change detection algorithm on 36 different time series and compare it to the original BOCPD algorithm. Our results show that, for some of these 36 time series, the segment-based approach for detecting abrupt changes can much more accurately identify change points based on standard metrics.more » « less
-
Detecting when the underlying distribution changes for the observed time series is a fundamental problem arising in a broad spectrum of applications. In this paper, we study multiple change-point localization in the high-dimensional regression setting, which is particularly challenging as no direct observations of the parameter of interest is available. Specifically, we assume we observe {xt,yt}nt=1 where {xt}nt=1 are p-dimensional covariates, {yt}nt=1 are the univariate responses satisfying 𝔼(yt)=x⊤tβ∗t for 1≤t≤n and {β∗t}nt=1 are the unobserved regression coefficients that change over time in a piecewise constant manner. We propose a novel projection-based algorithm, Variance Projected Wild Binary Segmentation~(VPWBS), which transforms the original (difficult) problem of change-point detection in p-dimensional regression to a simpler problem of change-point detection in mean of a one-dimensional time series. VPWBS is shown to achieve sharp localization rate Op(1/n) up to a log factor, a significant improvement from the best rate Op(1/n‾√) known in the existing literature for multiple change-point localization in high-dimensional regression. Extensive numerical experiments are conducted to demonstrate the robust and favorable performance of VPWBS over two state-of-the-art algorithms, especially when the size of change in the regression coefficients {β∗t}nt=1 is small.more » « less
-
Abstract Cumulative sum (CUSUM) statistics are widely used in the change point inference and identification. For the problem of testing for existence of a change point in an independent sample generated from the mean-shift model, we introduce a Gaussian multiplier bootstrap to calibrate critical values of the CUSUM test statistics in high dimensions. The proposed bootstrap CUSUM test is fully data dependent and it has strong theoretical guarantees under arbitrary dependence structures and mild moment conditions. Specifically, we show that with a boundary removal parameter the bootstrap CUSUM test enjoys the uniform validity in size under the null and it achieves the minimax separation rate under the sparse alternatives when the dimension p can be larger than the sample size n. Once a change point is detected, we estimate the change point location by maximising the ℓ∞-norm of the generalised CUSUM statistics at two different weighting scales corresponding to covariance stationary and non-stationary CUSUM statistics. For both estimators, we derive their rates of convergence and show that dimension impacts the rates only through logarithmic factors, which implies that consistency of the CUSUM estimators is possible when p is much larger than n. In the presence of multiple change points, we propose a principled bootstrap-assisted binary segmentation (BABS) algorithm to dynamically adjust the change point detection rule and recursively estimate their locations. We derive its rate of convergence under suitable signal separation and strength conditions. The results derived in this paper are non-asymptotic and we provide extensive simulation studies to assess the finite sample performance. The empirical evidence shows an encouraging agreement with our theoretical results.more » « less
-
We consider the problem of detecting a change in mean in a sequence of high-dimensional Gaussian vectors. The change in mean may be occurring simultaneously in an unknown subset components. We propose a hypothesis test to detect the presence of a change-point and establish the detection boundary in different regimes under the assumption that the dimension tends to infinity and the length of the sequence grows with the dimension. A remarkable feature of the proposed test is that it does not require any knowledge of the subset of components in which the change in mean is occurring and yet automatically adapts to yield optimal rates of convergence over a wide range of statistical regimes.more » « less
An official website of the United States government
