skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MMM: Machine Learning-Based Macro-Modeling for Linear Analog ICs and ADC/DACs
Performance modeling is a key bottleneck for analog design automation. Although machine learning-based models have advanced the state-of-the-art, they have so far suffered from huge data preparation cost, very limited reusability, and inadequate accuracy for large circuits. We introduce ML-based macro-modeling techniques to mitigate these problems for linear analog ICs and ADC/DACs. On representative testcases, our method achieves more than 1700× speedup for data preparation and remarkably smaller model errors compared to recent ML approaches. It also attains 3600× acceleration over SPICE simulation with very small errors and reduces data preparation time for an ADC design from 40 days to 9.6 hours.  more » « less
Award ID(s):
2212345
PAR ID:
10464361
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the ACM/IEEE Workshop on Machine Learning for CAD
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a design approach for the modeling and simulation of ultra-low power (ULP) analog computing machine learning (ML) circuits for seizure detection using EEG signals in wearable health monitoring applications. In this paper, we describe a new analog system modeling and simulation technique to associate power consumption, noise, linearity, and other critical performance parameters of analog circuits with the classification accuracy of a given ML network, which allows to realize a power and performance optimized analog ML hardware implementation based on diverse application-specific needs. We carried out circuit simulations to obtain non-idealities, which are then mathematically modeled for an accurate mapping. We have modeled noise, non-linearity, resolution, and process variations such that the model can accurately obtain the classification accuracy of the analog computing based seizure detection system. Noise has been modeled as an input-referred white noise that can be directly added at the input. Device process and temperature variations were modeled as random fluctuations in circuit parameters such as gain and cut-off frequency. Nonlinearity was mathematically modeled as a power series. The combined system level model was then simulated for classification accuracy assessments. The design approach helps to optimize power and area during the development of tailored analog circuits for ML networks with the ability to potentially trade power and performance goals while still ensuring the required classification accuracy. The simulation technique also enables to determine target specifications for each circuit block in the analog computing hardware. This is achieved by developing the ML hardware model, and investigating the effect of circuit nonidealities on classification accuracy. Simulation of an analog computing EEG seizure detection block shows a classification accuracy of 91%. The proposed modeling approach will significantly reduce design time and complexity of large analog computing systems. Two feature extraction approaches are also compared for an analog computing architecture. 
    more » « less
  2. Shen, Y (Ed.)
    In the rapidly evolving world of hardware security, developing metrics for evaluating the security improvements of hardware designs is important. This work examines the prevailing threat model for secure analog-to-digital converter (ADC) architectures and explains how signal-to-noise ratio (SNR), root-mean-square error (RMSE), and bit-wise accuracy (BWA) are used to evaluate security improvements. The existing metrics are mathematically related through the proposed Proxy ADC framework. The proposed SNR-RMSE and BWA-RMSE relationships are validated using a power side-channel attack on a commercial ADC. The SNR-RMSE relationship achieves an average percent error of 1.69% across four trials, while the BWA-RMSE relationship achieves an average of 7.97%. Using results from past secure ADC works allows for additional demonstrations of the relationships. These relationships can estimate accuracy in a realistic attack scenario where ADC outputs cannot be measured to verify the evaluation, and recontextualize the metrics of standard ADC design for hardware security. Furthermore, the Proxy ADC framework allows for comparison of tradeoffs between designs’ security and efficiency, revealing trends to leverage for future secure architectures. 
    more » « less
  3. In this paper, a monotonic power side-channel attack (PSA) is proposed to analyze the security vulnerabilities of flash analog-to-digital converters (ADC), where the digital output of a flash ADC is determined by characterizing the monotonic relationship between the traces of the power consumed and the applied input signals. A novel technique that leverages clock phase division is proposed to secure the power side channel information of a 4-bit flash ADC. The proposed technique adds randomness to decorrelate the input signal from the given power trace as the execution phase of each comparator depends on a thermometer code computed from the previous seven clock cycles. The monotonic PSA is executed on both a secured and unsecured ADC, with results indicating 1.9 bits of information leakage from an unprotected ADC and no data leakage from a protected ADC as the bit-wise accuracy is approximately 50% when secured. The monotonic PSA is more effective at attacking a flash ADC architecture than either a convolutional neural network based PSA or a correlation template PSA. The secured ADC core occupies approximately 2% more area than a non-secure ADC in a 65 nm process, and provides a sampling frequency of up to 500 MHz at a supply voltage of 1.2 V. Index Terms—power side-channel, ADC, 
    more » « less
  4. null (Ed.)
    Nanopore genome sequencing is the key to enabling personalized medicine, global food security, and virus surveillance. The state-of-the-art base-callers adopt deep neural networks (DNNs) to translate electrical signals generated by nanopore sequencers to digital DNA symbols. A DNN-based base-caller consumes 44.5% of total execution time of a nanopore sequencing pipeline. However, it is difficult to quantize a base-caller and build a power-efficient processing-in-memory (PIM) to run the quantized base-caller. Although conventional network quantization techniques reduce the computing overhead of a base-caller by replacing floating-point multiply-accumulations by cheaper fixed-point operations, it significantly increases the number of systematic errors that cannot be corrected by read votes. The power density of prior nonvolatile memory (NVM)-based PIMs has already exceeded memory thermal tolerance even with active heat sinks, because their power efficiency is severely limited by analog-to-digital converters (ADC). Finally, Connectionist Temporal Classification (CTC) decoding and read voting cost 53.7% of total execution time in a quantized base-caller, and thus became its new bottleneck. In this paper, we propose a novel algorithm/architecture co-designed PIM, Helix, to power-efficiently and accurately accelerate nanopore base-calling. From algorithm perspective, we present systematic error aware training to minimize the number of systematic errors in a quantized base-caller. From architecture perspective, we propose a low-power SOT-MRAM-based ADC array to process analog-to-digital conversion operations and improve power efficiency of prior DNN PIMs. Moreover, we revised a traditional NVM-based dot-product engine to accelerate CTC decoding operations, and create a SOT-MRAM binary comparator array to process read voting. Compared to state-of-the-art PIMs, Helix improves base-calling throughput by 6x, throughput per Watt by 11.9x and per mm2 by 7.5x without degrading base-calling accuracy. 
    more » « less
  5. Abstract Radiation measurement relies on pulse detection, which can be performed using various configurations of high-speed analog-to-digital converters (ADCs) and field-programmable gate arrays (FPGAs). For optimal power consumption, design simplicity, system flexibility, and the availability of DSP slices, we consider the Radio Frequency System-on-Chip (RFSoC) to be a more suitable option than traditional setups. To this end, we have developed custom RFSoC-based electronics and verified its feasibility. The ADCs on RFSoC exhibit a flat frequency response of 1–125 MHz. The root-mean-square (RMS) noise level is 2.1 ADC without any digital signal processing. The digital signal processing improves the RMS noise level to 0.8 ADC (input equivalent 40 μVrms). Baseline correction via digital signal processing can effectively prevent photomultiplier overshoot after a large pulse. Crosstalk between all channels is less than -55 dB. The measured data transfer speed can support up to 32 kHz trigger rates (corresponding to 750 Mbps). Overall, our RFSoC-based electronics are highly suitable for pulse detection, and after some modifications, they will be employed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). 
    more » « less