skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The two faces of Janus: Processes can be both exogenous forcings and endogenous feedbacks with wind as a case study
Abstract Janus is the Roman god of transitions. In many environments, state transitions are an important part of our understanding of ecological change. These transitions are controlled by the interactions between exogenous forcing factors and stabilizing endogenous feedbacks. Forcing factors and feedbacks are typically considered to consist of different processes. We argue that during extreme events, a process that usually forms part of a stabilizing feedback can behave as a forcing factor. And thus, like Janus, a single process can have two faces. The case explored here pertains to state change in drylands where interactions between wind erosion and vegetation form an important feedback that encourages grass‐to‐shrub state transitions. Wind concentrates soil resources in shrub‐centered fertile islands, removes resources through loss of fines to favor deep‐rooted shrubs, and abrades grasses' photosynthetic tissue, thus further favoring the shrub state that, in turn, experiences greater aeolian transport. This feedback is well documented but the potential of wind to act also as a forcing has yet to be examined. Extreme wind events have the potential to act like other drivers of state change, such as drought and grazing, to directly reduce grass cover. This study examines the responses of a grass‐shrub community after two extreme wind events in 2019 caused severe deflation. We measured grass cover and root exposure due to deflation, in addition to shrub height, grass patch size, and grass greenness along 50‐m transects across a wide range of grass cover. Root exposure was concentrated in the direction of erosive winds during the storms and sites with low grass cover were associated with increased root exposure and reduced greenness. We argue that differences between extreme, rare wind events and frequent, small wind events are significant enough to be differences in kind rather than differences in degree allowing extreme winds to behave as endogenous forcings and common winds to participate in an endogenous stabilizing feedback. Several types of state change in other ecological systems in are contextualized within this framework.  more » « less
Award ID(s):
2025166 1832194
PAR ID:
10464370
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Ecology
Volume:
104
Issue:
4
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Woody plant encroachment is a main driver of landscape change in drylands globally. In the Chihuahuan Desert, past livestock overgrazing interacted with prolonged drought to convert vast expanses of black grama (Bouteloua eriopoda) grasslands to honey mesquite (Prosopis glandulosa) shrublands. Such ecosystem state transitions have greatly reduced habitat for grassland wildlife species, increased soil erosion, and inhibited the delivery of ecosystem services to local communities. The potential for wild herbivores to trigger or reinforce shrubland states may be underappreciated, however, and few studies compare herbivory effects across multiple consumer taxa. Here, I address the roles of multiple mammalian herbivores in driving or reinforcing landscape change in the Chihuahuan Desert by examining their effects on plant communities over multiple spatial and temporal scales, as well as across plant life stages. Moreover, I studied these herbivore effects in the context of precipitation pulses, long-term climate influences, competitive interactions, and habitat structure. I used two long-term studies that hierarchically excluded herbivores by body size over 25 years (Herbivore Exclosure Study) and 21 years (Ecotone Study), and a perennial grass seedling herbivory experiment. Native rodents and lagomorphs were especially important in determining grass cover and plant community composition in wet periods and affected perennial grass persistence over multiple life stages. Conversely, during drought, climate drove declines in perennial grass cover, promoting shrub expansion across the landscape. In that shrub-encroached state, native small mammals reinforced grass loss in part because habitat structure provided cover from predators. This research advances our understanding of an underappreciated component of ecosystem change in drylands – small mammal herbivory – and highlights the need to incorporate positive feedbacks from native small mammals into conceptual models of grassland-shrubland transitions. 
    more » « less
  2. Abstract Herbivores can be drivers of ecosystem change by triggering and reinforcing vegetation transitions. Such processes may be prevalent in drylands with low productivity where herbivore abundances are linked to climate‐driven resource pulses. In the Chihuahuan Desert, ecosystems are being transformed from black grama (Bouteloua eriopoda) grasslands to honey mesquite (Neltuma[formerlyProsopis]glandulosa) shrublands. Domestic livestock, exotic African oryx (Oryx gazella), and native rodents and lagomorphs have all been implicated as drivers of these transitions through multiple mechanisms affecting different plant life stages. Across shrub encroachment gradients, we paired a long‐term (21 years) herbivore exclusion experiment focused on established perennial grasses with field trials measuring herbivory risk for perennial grass seedlings. We evaluated the roles of cattle, oryx, and native herbivores in reducing grass cover, and tested whether herbivore effects on grass cover and seedling mortality varied among ecosystem states (grassland, ecotone, and shrubland). Cattle and African oryx did not contribute strongly to vegetation dynamics. However, long‐term exclusion of rodents and lagomorphs led to two‐to‐threefold increases in perennial grass cover compared to control plots (with open access to all herbivores) in shrub‐encroached states where mesquite shrubs provided these herbivores with cover from predators. Likewise, herbivory of perennial grass seedlings was highest in the shrub‐encroached states and was driven by rodents. Our results indicate that native rodents and lagomorphs exert strong control over perennial grass dynamics, creating positive feedbacks mediated by changes in habitat structure that can reinforce grassland–shrubland transitions in drylands. 
    more » « less
  3. Abstract Vegetation change in drylands can influence wind erosion and sand and dust storms (SDS) with far‐reaching consequences for Earth systems and society. Although vegetation is recognized as an important control on wind erosion and SDS, the interactions are not well described at the landscape level or in the context of dryland ecosystem change. The transition of sites from one ecological state to another (e.g., grassland to shrubland) is typically associated with changes in the composition, cover, and structure of vegetation, which influence drag partitioning and wind shear velocities that drive aeolian sediment transport. Here, we quantify the magnitude and direction of aeolian sediment transport responses to ecological state change in the northern Chihuahuan Desert and identify thresholds associated with state transitions. Our results show aeolian sediment mass flux (Q) increased from ∼1 to 10 g m−1 d−1in historical grassland with scattered shrubs to ∼10–100 g m−1 d−1following shrub invasion and decline in perennial grass cover to ∼100–10,000 g m−1 d−1in shrubland following complete grass loss. The magnitude shifts were associated with critical perennial grass cover thresholds governing nonlinear increases inQacross ecological state transitions. Grass recovery in shrubland reducedQto rates similar to those in historical grasslands—a multiple order of magnitude reduction. Our results show that crossing degradation and restoration thresholds between alternative ecological states can have a profound effect on the magnitude and spatiotemporal variability of aeolian sediment transport and primacy in determining patterns of wind erosion and dust emissions in vegetated drylands. 
    more » « less
  4. Abstract In dryland ecosystems, vegetation within different plant functional groups exhibits distinct seasonal phenologies that are affected by the prevailing hydroclimatic forcing. The seasonal variability of precipitation, atmospheric evaporative demand, and streamflow influences root-zone water availability to plants in water-limited environments. Increasing interannual variations in climate forcing of the local water balance and uncertainty regarding climate change projections have raised the potential for phenological shifts and changes to vegetation dynamics. This poses significant risks to plant functional types across large areas, especially in drylands and within riparian ecosystems. Due to the complex interactions between climate, water availability, and seasonal plant water use, the timing and amplitude of phenological responses to specific hydroclimate forcing cannot be determined a priori , thus limiting efforts to dynamically predict vegetation greenness under future climate change. Here, we analyze two decades (1994–2021) of remote sensing data (soil adjusted vegetation index (SAVI)) as well as contemporaneous hydroclimate data (precipitation, potential evapotranspiration, depth to groundwater, and air temperature), to identify and quantify the key hydroclimatic controls on the timing and amplitude of seasonal greenness. We focus on key phenological events across four different plant functional groups occupying distinct locations and rooting depths in dryland SE Arizona: semi-arid grasses and shrubs, xeric riparian terrace and hydric riparian floodplain trees. We find that key phenological events such as spring and summer greenness peaks in grass and shrubs are strongly driven by contributions from antecedent spring and monsoonal precipitation, respectively. Meanwhile seasonal canopy greenness in floodplain and terrace vegetation showed strong response to groundwater depth as well as antecedent available precipitation (aaP = P − PET) throughout reaches of perennial and intermediate streamflow permanence. The timings of spring green-up and autumn senescence were driven by seasonal changes in air temperature for all plant functional groups. Based on these findings, we develop and test a simple, empirical phenology model, that predicts the timing and amplitude of greenness based on hydroclimate forcing. We demonstrate the feasibility of the model by exploring simple, plausible climate change scenarios, which may inform our understanding of phenological shifts in dryland plant communities and may ultimately improve our predictive capability of investigating and predicting climate-phenology interactions in the future. 
    more » « less
  5. Remote sensing methods are commonly used to assess and monitor ecosystem conditions in drylands, but accurate classification and detection of ecological state change are challenging due to sparse vegetation cover, high spatial heterogeneity, and high interannual variability in production. We evaluated whether phenological metrics are effective for distinguishing dryland ecological states using imagery from near-surface camera (PhenoCam) and satellite (Harmonized Landsat 8 and Sentinel-2, hereafter HLS) sources, and how effectiveness varied across wet and dry rainfall years. We analyzed time series over 92 site-years at a site in southern New Mexico undergoing transitions from grassland to shrubland on different soil types. Rainfall was a driver of phenological response across all ecological states, with wet years correlating with later start of season, later peak, higher peak greenness, and shorter growing season. This rainfall response was strongest in shrub-invaded grasslands on sandy soils. PhenoCam estimated significantly earlier start of season than HLS for shrublands on gravelly soils and earlier end of season than HLS for shrub-invaded grasslands on sandy soils. We propose integrating seasonal metrics from high-frequency PhenoCam time series with satellite assessments to improve monitoring efforts in drylands, use phenological differences across variable rainfall years to measure differences in ecosystem function among states, and use the timing and strength of peak greenness of key plant functional groups (grasses in our study site) as an indicator of ecological state change. 
    more » « less