Over six decades of semiconductor technology scaling (Moore's Law) and subsequently system size scaling (Bell's Law) has reduced the size of unit computing to virtually zero. This has led to computing becoming ubiquitous in everything around us, making everyday things smart. Similarly, tremendous progress in communication capacity (Shannon's theorem) has made these smart things connected to the internet and forming the Internet of Things (IoT). Many of these smart, connected devices are present in, on, or around the human body. This subset of IoT around the human body has a distinguishing feature, that it has a common medium, i.e. the body itself. This subset is increasingly becoming popular as the Internet of Bodies (IoB). In this paper, we look into the need and growth of IoB devices, including the technological landscape, current challenges and the future that IoB will enable for empowering humans.
more »
« less
Challenges in Metaverse Research: An Internet of Things Perspective
The paper describes research challenges arising from the increasing interest in supporting more immersive and more intelligent environments that enable the next generation of seamless human and physical interactions. These environments span the gamut from augmented-physical to virtual, and are referred to hereafter as the Metaverse. We focus on challenges that constitute a natural extension of Internet of Things (IoT) research. Among the key applications of IoT has always been the integration of physical and cyber environments to endow "things" with a better contextual understanding of their surroundings, and endow human users with more seamless means of perception and control, ranging from smart home automation to industrial applications. This IoT vision was based on the premise that the number of physical "things" on the Internet will soon significantly outpace humans. Intelligent IoT further envisions a proliferation of edge intelligence with which humans will interact. The paper elaborates the research challenges that extrapolate the above trajectory.
more »
« less
- Award ID(s):
- 2211301
- PAR ID:
- 10464628
- Date Published:
- Journal Name:
- IEEE International Conference on Metaverse Computing, Networking and Applications (IEEE MetaCom 2023)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Internet of Things (IoT) is becoming increasingly popular due to its ability to connect machines and enable an ecosystem for new applications and use cases. One such use case is industrial loT (1IoT) that refers to the application of loT in industrial settings especially engaging instrumentation and control of sensors and machines with Cloud technologies. Industries are counting on the fifth generation (5G) of mobile communications to provide seamless, ubiquitous and flexible connectivity among machines, people and sensors. The open radio access network (O-RAN) architecture adds additional interfaces and RAN intelligent controllers that can be leveraged to meet the IIoT service requirements. In this paper, we examine the connectivity requirements for IIoT that are dominated by two industrial applications: control and monitoring. We present the strength, weakness, opportunity, and threat (SWOT) analysis of O-RAN for IIoT and provide a use case example which illustrates how O-RAN can support diverse and changing IIoT network services. We conclude that the flexibility of the O-RAN architecture, which supports the latest cellular network standards and services, provides a path forward for next generation IIoT network design, deployment, customization, and maintenance. It offers more control but still lacks products-hardware and software-that are exhaustively tested in production like environments.more » « less
-
Padhy, Sudarsan; Oria, Vincent (Ed.)The simplicity, low cost, and scalability of Internet of Things (IoT) devices have led researchers to study their applications in a wide range of areas such as Healthcare, Transportation, and Agriculture. IoT devices help farmers to monitor the conditions in a field. These are connected to edge devices for real-time analysis. The edge servers send commands to actuators in the farm directly, without human intervention. At the same time, security vulnerabilities are a big concern, concomitant with the increasing utilization of IoT devices. If the duplication of an IoT device occurs and attackers gain access to the system, then the integrity of the entire ecosystem will be at stake, regardless of the application domain. This paper presents a Physical Unclonable Function (PUF) based hardware security primitive for the authentication of Internet of Agro-Things (IoAT) devices. The proposed security scheme has been prototyped with a testbed evaluation. An arbiter PUF module has been used for the validation of the proposed scheme. The PUF based security primitive is lightweight, scalable, and robust as it mainly depends on inherent manufacturing variations, thereby ensuring no chance for the duplication of IoT devices.more » « less
-
Modern embedded and cyber-physical systems are ubiquitous. Many critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality require real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However, RT-IoT are also increasingly becoming targets for cyber-attacks, which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT-IoT frameworks.more » « less
-
Smart devices and Internet of Things (IoT) technologies are replacing or being incorporated into traditional devices at a growing pace. The use of digital interfaces to interact with these devices has become a common occurrence in homes, work spaces, and various industries around the world. The most common interfaces for these connected devices focus on mobile apps or voice control via intelligent virtual assistants. However, with augmented reality (AR) becoming more popular and accessible among consumers, there are new opportunities for spatial user interfaces to seamlessly bridge the gap between digital and physical affordances. In this paper, we present a human-subject study evaluating and comparing four user interfaces for smart connected environments: gaze input, hand gestures, voice input, and a mobile app. We assessed participants’ user experience, usability, task load, completion time, and preferences. Our results show multiple trade-offs between these interfaces across these measures. In particular, we found that gaze input shows great potential for future use cases, while both gaze input and hand gestures suffer from limited familiarity among users, compared to voice input and mobile apps.more » « less
An official website of the United States government

