skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shortest Path to Boundary for Self-Intersecting Meshes
We introduce a method for efficiently computing the exact shortest path to the boundary of a mesh from a given internal point in the presence of self-intersections. We provide a formal definition of shortest boundary paths for self-intersecting objects and present a robust algorithm for computing the actual shortest boundary path. The resulting method offers an effective solution for collision and self-collision handling while simulating deformable volumetric objects, using fast simulation techniques that provide no guarantees on collision resolution. Our evaluation includes complex self-collision scenarios with a large number of active contacts, showing that our method can successfully handle them by introducing a relatively minor computational overhead.  more » « less
Award ID(s):
1764071
PAR ID:
10464805
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
42
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The multi objective shortest path (MOSP) problem, crucial in various practical domains, seeks paths that optimize multiple objectives. Due to its high computational complexity, numerous parallel heuristics have been developed for static networks. However, real-world networks are often dynamic where the network topology changes with time. Efficiently updating the shortest path in such networks is challenging, and existing algorithms for static graphs are inadequate for these dynamic conditions, necessitating novel approaches. Here, we first develop a parallel algorithm to efficiently update a single objective shortest path (SOSP) in fully dynamic networks, capable of accommodating both edge insertions and deletions. Building on this, we propose DynaMOSP, a parallel heuristic for Dynamic Multi Objective Shortest Path searches in large, fully dynamic networks. We provide a theoretical analysis of the conditions to achieve Pareto optimality. Furthermore, we devise a dedicated shared memory CPU implementation along with a version for heterogeneous computing environments. Empirical analysis on eight real-world graphs demonstrates that our method scales effectively. The shared memory CPU implementation achieves an average speedup of 12.74× and a maximum of 57.22×, while on an Nvidia GPU, it attains an average speedup of 69.19×, reaching up to 105.39× when compared to state-of-the-art techniques. 
    more » « less
  2. Computing the single-source shortest path (SSSP) is one of the fundamental graph algorithms, and is used in many applications. Here, we focus on computing SSSP on large dynamic graphs, i.e. graphs whose structure evolves with time. We posit that instead of recomputing the SSSP for each set of changes on the dynamic graphs, it is more efficient to update the results based only on the region of change. To this end, we present a novel two-step shared-memory algorithm for updating SSSP on weighted large-scale graphs. The key idea of our algorithm is to identify changes, such as vertex/edge addition and deletion, that affect the shortest path computations and update only the parts of the graphs affected by the change. We provide the proof of correctness of our proposed algorithm. Our experiments on real and synthetic networks demonstrate that our algorithm is as much as 4X faster compared to computing SSSP with Galois, a state-of-the-art parallel graph analysis software for shared memory architectures. We also demonstrate how increasing the asynchrony can lead to even faster updates. To the best of our knowledge, this is one of the first practical parallel algorithms for updating networks on shared-memory systems, that is also scalable to large networks. 
    more » « less
  3. Abstract Dynamic processes on networks, be it information transfer in the Internet, contagious spreading in a social network, or neural signaling, take place along shortest or nearly shortest paths. Computing shortest paths is a straightforward task when the network of interest is fully known, and there are a plethora of computational algorithms for this purpose. Unfortunately, our maps of most large networks are substantially incomplete due to either the highly dynamic nature of networks, or high cost of network measurements, or both, rendering traditional path finding methods inefficient. We find that shortest paths in large real networks, such as the network of protein-protein interactions and the Internet at the autonomous system level, are not random but are organized according to latent-geometric rules. If nodes of these networks are mapped to points in latent hyperbolic spaces, shortest paths in them align along geodesic curves connecting endpoint nodes. We find that this alignment is sufficiently strong to allow for the identification of shortest path nodes even in the case of substantially incomplete networks, where numbers of missing links exceed those of observable links. We demonstrate the utility of latent-geometric path finding in problems of cellular pathway reconstruction and communication security. 
    more » « less
  4. Understanding bond rupture in polymer networks remains a fundamental challenge due to the interplay of network topology and condensed phase effects. In this work, we introduce a predictive approach for determining bond rupture in thermosets based on shortest paths (SPs) analysis of the network topology. This method enumerates SP sets in networks with periodic boundary conditions, with applications to both all-atom and coarse-grained simulations. We find that bond rupture is most likely to initiate on the first (shortest) SP in the thermoset network and the strain at which the first bond ruptures is linearly correlated with the topological path length. As a result, one can predict the first bond rupture by computing the first SP directly from the initial thermoset topology without resorting to MD simulations. Furthermore, the specific bond rupture location along the first SP follows a probability distribution associated with the SP-based betweenness centrality. Subsequent bond rupture events are dictated by the instantaneous SP of partially broken networks. Moreover, we quantify the length scale dependence of SP distributions, introducing a means of partially bridging the observed ductile rupture in molecular simulations and brittle rupture in experiments. 
    more » « less
  5. Given a set of pairwise disjoint polygonal obstacles in the plane, finding an obstacle-avoiding Euclidean shortest path between two points is a classical problem in computational geometry and has been studied extensively. Previously, Hershberger and Suri (in SIAM Journal on Computing , 1999) gave an algorithm of O(n log n ) time and O(n log n ) space, where n is the total number of vertices of all obstacles. Recently, by modifying Hershberger and Suri’s algorithm, Wang (in SODA’21) reduced the space to O(n) while the runtime of the algorithm is still O(n log n ). In this article, we present a new algorithm of O(n+h log h ) time and O(n) space, provided that a triangulation of the free space is given, where h is the number of obstacles. The algorithm is better than the previous work when h is relatively small. Our algorithm builds a shortest path map for a source point s so that given any query point t , the shortest path length from s to t can be computed in O (log n ) time and a shortest s - t path can be produced in additional time linear in the number of edges of the path. 
    more » « less