Inspired by the natural intelligence of humans and bio-evolution, Artificial Intelligence (AI) has seen accelerated growth since the beginning of the 21st century. Successful AI applications have been broadly reported, with Industry 4.0 providing a thematic platform for AI-related research and development in manufacturing. This paper highlights applications of AI in manufacturing, ranging from production system design and planning to process modeling, optimization, quality assurance, maintenance, automated assembly and disassembly. In addition, the paper presents an overview of representative manufacturing problems and matching AI solutions, and a perspective of future research to leverage AI towards the realization of smart manufacturing.
more »
« less
Artificial intelligence research strategy of the United States: critical assessment and policy recommendations
The foundations of Artificial Intelligence (AI), a field whose applications are of great use and concern for society, can be traced back to the early years of the second half of the 20th century. Since then, the field has seen increased research output and funding cycles followed by setbacks. The new millennium has seen unprecedented interest in AI progress and expectations with significant financial investments from the public and private sectors. However, the continual acceleration of AI capabilities and real-world applications is not guaranteed. Mainly, accountability of AI systems in the context of the interplay between AI and the broader society is essential for adopting AI systems via the trust placed in them. Continual progress in AI research and development (R&D) can help tackle humanity's most significant challenges to improve social good. The authors of this paper suggest that the careful design of forward-looking research policies serves a crucial function in avoiding potential future setbacks in AI research, development, and use. The United States (US) has kept its leading role in R&D, mainly shaping the global trends in the field. Accordingly, this paper presents a critical assessment of the US National AI R&D Strategic Plan and prescribes six recommendations to improve future research strategies in the US and around the globe.
more »
« less
- Award ID(s):
- 2131504
- PAR ID:
- 10464887
- Date Published:
- Journal Name:
- Frontiers in Big Data
- Volume:
- 6
- ISSN:
- 2624-909X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recently artificial intelligence (AI) and machine learning (ML) models have demonstrated remarkable progress with applications developed in various domains. It is also increasingly discussed that AI and ML models and applications should be transparent, explainable, and trustworthy. Accordingly, the field of Explainable AI (XAI) is expanding rapidly. XAI holds substantial promise for improving trust and transparency in AI-based systems by explaining how complex models such as the deep neural network (DNN) produces their outcomes. Moreover, many researchers and practitioners consider that using provenance to explain these complex models will help improve transparency in AI-based systems. In this paper, we conduct a systematic literature review of provenance, XAI, and trustworthy AI (TAI) to explain the fundamental concepts and illustrate the potential of using provenance as a medium to help accomplish explainability in AI-based systems. Moreover, we also discuss the patterns of recent developments in this area and offer a vision for research in the near future. We hope this literature review will serve as a starting point for scholars and practitioners interested in learning about essential components of provenance, XAI, and TAI.more » « less
-
Introduction: Artificial intelligence (AI) technologies continue to attract interest from a broad range of disciplines in recent years, including health. The increase in computer hardware and software applications in medicine, as well as digitization of health-related data together fuel progress in the development and use of AI in medicine. This progress provides new opportunities and challenges, as well as directions for the future of AI in health. Objective: The goals of this survey are to review the current state of AI in health, along with opportunities, challenges, and practical implications. This review highlights recent developments over the past five years and directions for the future. Methods: Publications over the past five years reporting the use of AI in health in clinical and biomedical informatics journals, as well as computer science conferences, were selected according to Google Scholar citations. Publications were then categorized into five different classes, according to the type of data analyzed. Results: The major data types identified were multi-omics, clinical, behavioral, environmental and pharmaceutical research and development (R&D) data. The current state of AI related to each data type is described, followed by associated challenges and practical implications that have emerged over the last several years. Opportunities and future directions based on these advances are discussed. Conclusion: Technologies have enabled the development of AI-assisted approaches to healthcare. However, there remain challenges. Work is currently underway to address multi-modal data integration, balancing quantitative algorithm performance and qualitative model interpretability, protection of model security, federated learning, and model bias.more » « less
-
The field of Artificial Intelligence (AI) is rapidly advancing, with significant potential to transform society. However, it faces a notable challenge: lack of diversity, a longstanding issue in STEM fields. In this context, this position paper examines the intersection of AI and identity as a pathway to understanding biases, inequalities, and ethical considerations in AI development and deployment. We present a multifaceted definition of AI identity, which encompasses its creators, applications, and their broader impacts. Understanding AI's identity involves analyzing the diverse individuals involved in AI's development, the technologies produced, and the social, ethical, and psychological implications. After exploring the AI identity ecosystem and its societal dynamics, We propose a framework that highlights the need for diversity in AI across three dimensions: Creators, Creations, and Consequences through the lens of identity. This paper presents a research framework for examining the implications and changes needed to foster a more inclusive and responsible AI ecosystem through the lens of identity.more » « less
-
The open radio access network (O-RAN) describes an industry-driven open architecture and interfaces for building next generation RANs with artificial intelligence (AI) controllers. We circulated a survey among researchers, developers, and practitioners to gather their perspectives on O-RAN as a framework for 6G wireless research and development (R&D). The majority responded in favor of O-RAN and identified R&D of interest to them. Motivated by these responses, this paper identifies the limitations of the current O-RAN specifications and the technologies for overcoming them. We recognize end-to-end security, deterministic latency, physical layer real-time control, and testing of AI-based RAN control applications as the critical features to enable and discuss R&D opportunities for extending the architectural capabilities of O-RAN as a platform for 6G wireless.more » « less
An official website of the United States government

