skip to main content

Title: FPGA Acceleration of Probabilistic Sentential Decision Diagrams with High-level Synthesis
Probabilistic Sentential Decision Diagrams (PSDDs) provide efficient methods for modeling and reasoning with probability distributions in the presence of massive logical constraints. PSDDs can also be synthesized from graphical models such as Bayesian networks (BNs) therefore offering a new set of tools for performing inference on these models (in time linear in the PSDD size). Despite these favorable characteristics of PSDDs, we have found multiple challenges in PSDD’s FPGA acceleration. Problems include limited parallelism, data dependency, and small pipeline iterations. In this article, we propose several optimization techniques to solve these issues with novel pipeline scheduling and parallelization schemes. We designed the PSDD kernel with a high-level synthesis (HLS) tool for ease of implementation and verified it on the Xilinx Alveo U250 board. Experimental results show that our methods improve the baseline FPGA HLS implementation performance by 2,200X and the multicore CPU implementation by 20X. The proposed design also outperforms state-of-the-art BN and Sum Product Network (SPN) accelerators that store the graph information in memory.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Reconfigurable Technology and Systems
Page Range / eLocation ID:
1 to 22
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Designs generated by high-level synthesis (HLS) tools typically achieve a lower frequency compared to manual RTL designs. In this work, we study the timing issues in a diverse set of realistic and complex FPGA HLS designs. (1) We observe that in almost all cases the frequency degradation is caused by the broadcast structures generated by the HLS compiler. (2)We classify three major types of broadcasts in HLS-generated designs, including high-fanout data signals, pipeline flow control signals and synchronization signals for concurrent modules. (3) We reveal a number of limitations of the current HLS tools that result in those broadcast-related timing issues. (4) We propose a set of effective yet easy-to-implement approaches, including broadcast-aware scheduling, synchronization pruning, and skid-buffer-based flow control. Our experimental results show that our methods can improve the maximum frequency of a set of nine representative HLS benchmarks by 53% on average. In some cases, the frequency gain is more than 100 MHz. 
    more » « less
  2. The development of FPGA-based applications using HLS is fraught with performance pitfalls and large design space exploration times. These issues are exacerbated when the application is complicated and its performance is dependent on the input data set, as is often the case with graph neural network approaches to machine learning. Here, we introduce HLPerf, an open-source, simulation-based performance evaluation framework for dataflow architectures that both supports early exploration of the design space and shortens the performance evaluation cycle. We apply the methodology to GNNHLS, an HLS-based graph neural network benchmark containing 6 commonly used graph neural network models and 4 datasets with distinct topologies and scales. The results show that HLPerf achieves over 10 000 × average simulation acceleration relative to RTL simulation and over 400 × acceleration relative to state-of-the-art cycle-accurate tools at the cost of 7% mean error rate relative to actual FPGA implementation performance. This acceleration positions HLPerf as a viable component in the design cycle.

    more » « less
  3. Deep Neural Networks (DNNs) have been successfully applied in many fields. Considering performance, flexibility, and energy efficiency, Field Programmable Gate Array (FPGA) based accelerator for DNNs is a promising solution. The existing frameworks however lack the possibility of reusability and friendliness to design a new network with minimum efforts. Modern high-level synthesis (HLS) tools greatly reduce the turnaround time of designing and implementing complex FPGA-based accelerators. This paper presents a framework for hardware accelerator for DNNs using high level specification. A novel architecture is introduced that maximizes data reuse and external memory bandwidth. This framework allows to generate a scalable HLS code for a given pre-trained model that can be mapped to different FPGA platforms. Various HLS compiler optimizations have been applied to the code to produce efficient implementation and high resource utilization. The framework achieves a peak performance of 23 frames per second for SqueezeNet on Xilinx Alveo u250 board. 
    more » « less
  4. The two largest barriers to adoption of FPGA platforms for HPC applications are the difficulty of programming FPGAs and the performance gap when compared to GPUs. To address the first barrier, new ecosystems like Intel oneAPI, and Xilinx Vitis HLS aim to improve programmability for FPGA platforms. From a performance aspect, FPGAs trade off lower compute frequencies for more customized hardware acceleration and power efficiency when compared to GPUs. The performance for memory-bound applications on recent GPU platforms like NVIDIA’s H100 and AMD’s MI210 has also improved due to the inclusion of high-bandwidth memories (HBM), and newer FPGA platforms are also starting to include HBM in addition to traditional DRAM. To understand the current state-of-the-art and performance differences between FPGAs and GPUs, we consider realized memory bandwidth for recent FPGA and GPU platforms. We utilize a custom STREAM benchmark to evaluate two Intel FPGA platforms, the Stratix 10 SX PAC and Bittware 520N-MX, two AMD/Xilinx FPGA platforms, the Alveo U250 and Alveo U280, as well as GPU platforms from NVIDIA and AMD. We also extract power measurements and estimate memory bandwidth per Watt ((GB/s)/W) on these platforms to evaluate how FPGAs compare against GPU execution. While the GPUs far exceed the FPGAs in raw performance, the HBM equipped FPGAs demonstrate a competitive performance-power balance for larger data sizes that can be easily implemented with oneAPI and Vitis HLS kernels. These findings suggest a potential sweet spot for this emerging FPGA ecosystem to serve bandwidth limited applications in an energy-efficient fashion. 
    more » « less
  5. With the ever-growing popularity of Graph Neural Networks (GNNs), efficient GNN inference is gaining tremendous attention. Field-Programmable Gate Arrays (FPGAs) are a promising execution platform due to their fine-grained parallelism, low power consumption, reconfigurability, and concurrent execution. Even better, High-Level Synthesis (HLS) tools help bridge the gap between the non-trivial FPGA development efforts and rapid emergence of new GNN models. To enable investigation into how effectively modern HLS tools can accelerate GNN inference, we present GNNHLS, a benchmark suite containing a software stack for data generation and baseline deployment and FPGA implementations of 6 well-tuned GNN HLS kernels. 
    more » « less