skip to main content

Title: JWST Imaging of Earendel, the Extremely Magnified Star at Redshift z = 6.2
Abstract The gravitationally lensed star WHL 0137–LS, nicknamed Earendel, was identified with a photometric redshift z phot = 6.2 ± 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8–5.0 μ m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to μ > 4000 and restricting the source plane radius further to r < 0.02 pc, or ∼4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T eff ≃ 13,000–16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log ( L ) = 5.8 to 6.6 L ⊙ , which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal Letters
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, we present a constraint on the abundance of supergiant (SG) stars at redshiftz ≈ 1, based on recent observations of a strongly lensed arc at this redshift. First we derived a free-form model of MACS J0416.1-2403 using data from the Beyond Ultra-deep Frontier Fields and Legacy Observations (BUFFALO) program. The new lens model is based on 72 multiply lensed galaxies that produce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The larger coverage in BUFFALO allowed us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraints up to ∼1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for the number of high-redshift multiply lensed galaxies detected in future observations with theJames WebbSpace Telescope (JWST). Then we focus on a previously known lensed galaxy atz = 1.0054, nicknamed Spock, which contains four previously reported transients. We interpret these transients as microcaustic crossings of SG stars and explain how we computed the probability of such events. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) of SG stars atz = 1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a number density of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (Lmax ≈ 6 × 105Lfor red stars), which is below ∼400 stars kpc−2, or (2) the absence of stars beyond the HD limit but with a SG number density of ∼9000 kpc−2for stars with luminosities between 105Land 6 × 105L. This is equivalent to one SG star per 10 × 10 pc2. Finally, we make predictions for future observations with JWST’s NIRcam. We find that in observations made with theF200Wfilter that reach 29 mag AB, if cool red SG stars exist atz ≈ 1 beyond the HD limit, they should be easily detected in this arc.

    more » « less

    We present the results of a search for high-redshift (z > 9) galaxy candidates in the JWST UNCOVER survey, using deep NIRCam and NIRISS imaging in seven bands over ∼45 arcmin2 and ancillary Hubble Space Telescope (HST) observations. The NIRCam observations reach a 5σ limiting magnitude of ∼29.2 AB. The identification of high-z candidates relies on a combination of a dropout selection and photometric redshifts. We find 16 candidates at 9 < z < 12 and three candidates at 12 < z < 13, eight candidates are deemed very robust. Their lensing amplification ranges from μ = 1.2 to 11.5. Candidates have a wide range of (lensing corrected) luminosities and young ages, with low stellar masses [6.8 < log(M⋆/M⊙) < 9.5] and low star formation rates (SFR = 0.2–7 M⊙ yr−1), confirming previous findings in early JWST observations of z > 9. A few galaxies at z ∼ 9−10 appear to show a clear Balmer break between the F356W and F444W/F410M bands, which helps constrain their stellar mass. We estimate blue UV continuum slopes between β = −1.8 and −2.3, typical for early galaxies at z > 9 but not as extreme as the bluest recently discovered sources. We also find evidence for a rapid redshift-evolution of the mass-luminosity relation and a redshift evolution of the UV continuum slope for a given range of intrinsic magnitude, in line with theoretical predictions. These findings suggest that deeper JWST observations are needed to reach the fainter galaxy population at those early epochs, and follow-up spectroscopy will help better constrain the physical properties and star formation histories of a larger sample of galaxies.

    more » « less
  3. null (Ed.)
    We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <   z  <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log( M * / M ⊙ ) > 6 and redshifts of 0 <   z  <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z  >  5 galaxy samples can be reduced to < 0.01 arcmin −2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <   z  <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes m UV  <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z  ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end. 
    more » « less
  4. Exploiting the sensitivity of the IRAM NOrthern Extended Millimeter Array (NOEMA) and its ability to process large instantaneous bandwidths, we have studied the morphology and other properties of the molecular gas and dust in the star forming galaxy, H-ATLAS J131611.5+281219 (HerBS-89a), at z = 2.95. High angular resolution (0 . ″3) images reveal a partial 1 . ″0 diameter Einstein ring in the dust continuum emission and the molecular emission lines of 12 CO(9−8) and H 2 O(2 02  − 1 11 ). Together with lower angular resolution (0 . ″6) images, we report the detection of a series of molecular lines including the three fundamental transitions of the molecular ion OH + , namely (1 1  − 0 1 ), (1 2  − 0 1 ), and (1 0  − 0 1 ), seen in absorption; the molecular ion CH + (1 − 0) seen in absorption, and tentatively in emission; two transitions of amidogen (NH 2 ), namely (2 02  − 1 11 ) and (2 20  − 2 11 ) seen in emission; and HCN(11 − 10) and/or NH(1 2  − 0 1 ) seen in absorption. The NOEMA data are complemented with Very Large Array data tracing the 12 CO(1 − 0) emission line, which provides a measurement of the total mass of molecular gas and an anchor for a CO excitation analysis. In addition, we present Hubble Space Telescope imaging that reveals the foreground lensing galaxy in the near-infrared (1.15  μ m). Together with photometric data from the Gran Telescopio Canarias, we derive a photometric redshift of z phot = 0.9 −0.5 +0.3 for the foreground lensing galaxy. Modeling the lensing of HerBS-89a, we reconstruct the dust continuum (magnified by a factor μ  ≃ 5.0) and molecular emission lines (magnified by μ  ∼ 4 − 5) in the source plane, which probe scales of ∼0 . ″1 (or 800 pc). The 12 CO(9 − 8) and H 2 O(2 02  − 1 11 ) emission lines have comparable spatial and kinematic distributions; the source-plane reconstructions do not clearly distinguish between a one-component and a two-component scenario, but the latter, which reveals two compact rotating components with sizes of ≈1 kpc that are likely merging, more naturally accounts for the broad line widths observed in HerBS-89a. In the core of HerBS-89a, very dense gas with n H 2  ∼ 10 7 − 9 cm −3 is revealed by the NH 2 emission lines and the possible HCN(11 − 10) absorption line. HerBS-89a is a powerful star forming galaxy with a molecular gas mass of M mol  = (2.1 ± 0.4) × 10 11   M ⊙ , an infrared luminosity of L IR  = (4.6 ± 0.4) × 10 12   L ⊙ , and a dust mass of M dust  = (2.6 ± 0.2) × 10 9   M ⊙ , yielding a dust-to-gas ratio δ GDR  ≈ 80. We derive a star formation rate SFR = 614 ± 59  M ⊙ yr −1 and a depletion timescale τ depl  = (3.4 ± 1.0) × 10 8 years. The OH + and CH + absorption lines, which trace low (∼100 cm −3 ) density molecular gas, all have their main velocity component red-shifted by Δ V  ∼ 100 km s −1 relative to the global CO reservoir. We argue that these absorption lines trace a rare example of gas inflow toward the center of a galaxy, indicating that HerBS-89a is accreting gas from its surroundings. 
    more » « less
  5. Abstract

    We report the discovery of two extremely magnified lensed star candidates behind the galaxy cluster MACS J0647.7+015 using recent multiband James Webb Space Telescope (JWST) NIRCam observations. The star candidates are seen in a previously known,zphot≃ 4.8 dropout giant arc that straddles the critical curve. The candidates lie near the expected critical curve position, but lack clear counter-images on the other side of it, suggesting these are possibly stars undergoing caustic crossings. We present revised lensing models for the cluster, including multiply imaged galaxies newly identified in the JWST data, and use them to estimate background macro-magnifications of at least ≳90 and ≳50 at the positions of the two candidates, respectively. With these values, we expect effective, caustic-crossing magnifications of ∼[103–105] for the two star candidates. The spectral energy distributions of the two candidates match well the spectra of B-type stars with best-fit surface temperatures of ∼10,000 K, and ∼12,000 K, respectively, and we show that such stars with masses ≳20Mand ≳50M, respectively, can become sufficiently magnified to be observable. We briefly discuss other alternative explanations and conclude that these objects are likely lensed stars, but also acknowledge that the less-magnified candidate may alternatively reside in a star cluster. These star candidates constitute the second highest-redshift examples to date after Earendel atzphot≃ 6.2, establishing further the potential of studying extremely magnified stars at high redshifts with JWST. Planned future observations, including with NIRSpec, will enable a more detailed view of these candidates in the near future.

    more » « less