skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Photothermal Conversion by Carbon Black Facilitates Aryl Migration by Photon‐Promoted Temperature Gradients
Abstract The Newman Kwart Rearrangement (NKR) offers an efficient and high‐yielding method for producing substituted thiophenols from phenols. While an industrially important protocol, it suffers from high activation energy barriers (35–43 kcal/mol), requiring the use of extreme temperatures (>200 °C) and specialty equipment. This report details a highly efficient and straightforward method for facilitating the NKR using photothermal conversion. This underused, unique reactivity pathway arises from the irradiation of nanomaterials that relax via a non‐radiative decay pathway to generate intense thermal gradients. We show carbon black (CB) can be an inexpensive and abundant photothermal agent under visible light irradiation to achieve a facile NKR under mild conditions. The scope includes a wide array of stereo‐ and electronically diverse substrates with increasing difficulty of rearrangement, including BHT and BINOL as effective substrates. Furthermore, we demonstrate the unique application for temporal control in a thermal reaction and tunability of thermal gradients by modulating light intensity. Ultimately, photothermal conversion enables high‐temperature reactions with simple, visible light irradiation.  more » « less
Award ID(s):
1719875
PAR ID:
10465034
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
40
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The photothermal experiments on the incident light angle dependence are carried out using simulated solar light on thin films of both iron oxides (Fe3O4 and Fe3O4@Cu2-xS) and porphyrin compounds (chlorophyll and chlorophyllin). Fe3O4 and Fe3O4@Cu2-xS are synthesized using various solution methods that produce mono-dispersed nanoparticles on the order of 10 nm. Chlorophyll is extracted from fresh spinach and chlorophyllin sodium copper is a commercial product. These photothermal (PT) materials are dispersed in polymethyl methacrylate (PMMA) solutions and deposited on glass substrates via spin coating that result in clear and transparent thin films. The iron-oxide based thin films show distinctive absorption spectra; Fe3O4 exhibits a strong peak near UV and gradually decreases into the visible and NIR regions; the absorption of Fe3O4@Cu2-xS is similar in the UV region but shows a broad absorption in the NIR region. Both chlorophyll and chlorophyllin are characterized with absorption peaks near UV and NIR showing a “U”-shaped spectrum, ideally required for efficient solar harvest and high transparency in energy-efficient single-pane window applications. Upon coating of the transparent PT films on the window inner surfaces, solar irradiation induces the photothermal effect, consequently raising the film temperature. In this fashion, the thermal loss through the window can be significantly lowered by reducing the temperature difference between the window inner surface and the room interior, based on a new concept of so-called “optical thermal insulation” (OTI) without any intervention medium, such as air/argon, as required in the glazing technologies. Single-panes are therefore possible to replace double- or triple panes. As OTI is inevitably affected by seasonal and daily sunlight changes, an incident light angle dependence of the photothermal effect is crucial in both thin film and window designs. It is found that the heating curves reach their maxima at small angles of incidence while the photothermal effect is considerably reduced at large angles. This angle dependence is well explained by light reflection by the thin film surface, however, deviated from what is predicted by the Fresnel’s law, attributable to non-ideal surfaces of the substrates. The angle dependence data provides an important reference for OTI that window exposure to sun is greater at winter solstice while that is considerably reduced in the summer. This conclusion indicates much enhanced solar harvesting and heat conversion via optically insulated windows in the winter season, resulting in much lower U-factors. 
    more » « less
  2. Abstract Photothermal reagents sensitive to near‐infrared (NIR) light are promising imaging agents and therapeutics for anticancer applications because of the deep tissue penetration of NIR light, allowing for spatiotemporal control over the therapeutic activity, with minimal damage to normal tissues. Herein, a new class of NIR‐sensitive biopolymer‐based nanoparticles is presented by covalently conjugating indocyanine green (ICG) onto the surface of naturally occurring glycogen nanoparticles. The resulting ICG‐glycogen conjugates exhibit a markedly enhanced aqueous stability in comparison to free ICG molecules. Furthermore, an efficient light‐to‐heat conversion is enabled by ICG‐glycogen conjugates, as evidenced by the elevated temperatures of their aqueous solutions upon exposure to NIR light. Critically, ICG‐glycogen conjugates are capable of cell internalization, and under NIR irradiation the effective eradication of breast cancer cells, demonstrating their potential in photothermal therapy for cancer. 
    more » « less
  3. Configured with a rapid evaporation rate and a high photothermal conversion efficiency, solar-driven interfacial evaporation displays considerable promise for seawater desalination. Inspired by the versatility and deployability of origami-based structures, we demonstrate a portable waterbomb origami pattern-based tower-like structure, named an “origami tower”, as a convertible photothermal evaporator floating on water for efficient solar-driven interfacial desalination. The origami tower has predictable deformability, featuring reversible radial expansion and contraction radially accompanied by small changes in the axial direction. The reversible adjustability of the origami tower offers convenience for transportation and storage, while the quick expansion into its tower shape provides rapid deployment capabilities. Benefiting from an enlarged evaporation surface, excellent light trapping ability, and heat localization, the origami-tower photothermal evaporator yields an evaporation rate of 2.67 kg m −2 h −1 under one sun illumination. This reversible 3D origami-based photothermal evaporator opens a new avenue for building a portable and efficient solar thermal desalination system. 
    more » « less
  4. Abstract Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used to enhance and control dissolution and release of drugs, for targeted drug delivery, as antimicrobial agents, localized heat sources, and for unique optoelectronic applications. Gold NPs in particular exhibit a plasmonic response that has been utilized for photothermal energy conversion. Because plasmonic nanoparticles typically exhibit a plasmon resonance frequency similar to the visible light spectrum, they present as good candidates for direct photothermal conversion with enhanced solar thermal efficiency in these wavelengths. In our work, we have incorporated ∼3-nm-diameter colloidal gold (Au c ) NPs into electrospun polyethylene glycol (PEG) fibers to utilize the nanoparticle plasmonic response for localized heating and melting of the polymer to release medical treatment. Au c and Au c in PEG (PEG+Au c ) both exhibited a minimum reflectivity at 522 nm or approximately green wavelengths of light under ultraviolet-visible (UV-Vis) spectroscopy. PEG+Au c ES fibers revealed a blue shift in minimum reflectivity at 504 nm. UV-Vis spectra were used to calculate the theoretical efficiency enhancement of PEG+Au c versus PEG alone, finding an approximate increase of 10 % under broad spectrum white light interrogation, and ∼14 % when illuminated with green light. Au c enhanced polymers were ES directly onto resistance temperature detectors and interrogated with green laser light so that temperature change could be recorded. Results showed a maximum increase of 8.9 °C. To further understand how gold nanomaterials effect the complex optical properties of our materials, spectroscopic ellipsometry was used. Using spectroscopic ellipsometry and modeling with CompleteEASE® software, the complex optical constants of our materials were determined. The complex optical constant n (index of refraction) provided us with optical density properties related to light wavelength divided by velocity, and k (extinction coefficient) was used to show the absorptive properties of the materials. 
    more » « less
  5. To address critical energy issues in civic structures, we have developed a novel concept of optical thermal insulation (OTI) without relying on a conventional thermal intervention medium, such as air or argon, as often used in conventional window systems. We have synthesized the photothermal (PT) materials, such as the Fe 3 O 4 and Fe 3 O 4 @Cu 2− x S nanoparticles, that exhibit strong UV and near-infrared (NIR) absorptions but with good visible transparency. Upon coating the inner surface of the window glass with a PT film, under solar irradiation, the inner surface temperature rises due to the PT effect. Subsequently, the temperature difference, Δ T , is reduced between the single pane and room interior. This leads to lower the thermal loss through a window, reflected by the U -factor, resulting in considerable energy saving without double- or triple-glazing. Comparing with the Fe 3 O 4 coatings, Fe 3 O 4 @Cu 2− x S is spectrally characterized with a much stronger NIR absorbance, contributing to an increased PT efficiency under simulated solar irradiation (0.1 W/cm 2 ). PT experiments are carried out via both white light and monochromic NIR irradiations (785 nm). The parameters associated with the thermal performance of the PT films are calculated, including PT conversion efficiency, specific absorption rate (SAR), and U -factor. Based on the concept of OTI, we have reached an optimum U -factor of 1.46 W/m 2 K for a single pane, which is satisfactory to the DOE requirement (<1.7 W/m 2 K). 
    more » « less