skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assembler artifacts include misassembly because of unsafe unitigs and underassembly because of bidirected graphs
Recent assemblies by the T2T and VGP consortia have achieved significant accuracy but required a tremendous amount of effort and resources. More typical assembly efforts, on the other hand, still suffer both from misassemblies (joining sequences that should not be adjacent) and from underassemblies (not joining sequences that should be adjacent). To better understand the common algorithm-driven causes of these limitations, we investigated the unitig algorithm, which is a core algorithm at the heart of most assemblers. We prove that, contrary to popular belief, even when there are no sequencing errors, unitigs are not always safe (i.e., they are not guaranteed to be substrings of the sequenced genome). We also prove that the unitigs of a bidirected de Bruijn graph are different from those of a doubled de Bruijn graph and, contrary to our expectations, result in underassembly. Using experimental simulations, we then confirm that these two artifacts exist not only in theory but also in the output of widely used assemblers. In particular, when coverage is low, then even error-free data result in unsafe unitigs; also, unitigs may unnecessarily split palindromes in half if special care is not taken. To the best of our knowledge, this paper is the first to theoretically predict the existence of these assembler artifacts and confirm and measure the extent of their occurrence in practice.  more » « less
Award ID(s):
1931531 1453527
PAR ID:
10465365
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Genome Research
Volume:
32
Issue:
9
ISSN:
1088-9051
Page Range / eLocation ID:
1746 to 1753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Motivation The construction of the compacted de Bruijn graph from collections of reference genomes is a task of increasing interest in genomic analyses. These graphs are increasingly used as sequence indices for short- and long-read alignment. Also, as we sequence and assemble a greater diversity of genomes, the colored compacted de Bruijn graph is being used more and more as the basis for efficient methods to perform comparative genomic analyses on these genomes. Therefore, time- and memory-efficient construction of the graph from reference sequences is an important problem. Results We introduce a new algorithm, implemented in the tool Cuttlefish, to construct the (colored) compacted de Bruijn graph from a collection of one or more genome references. Cuttlefish introduces a novel approach of modeling de Bruijn graph vertices as finite-state automata, and constrains these automata’s state-space to enable tracking their transitioning states with very low memory usage. Cuttlefish is also fast and highly parallelizable. Experimental results demonstrate that it scales much better than existing approaches, especially as the number and the scale of the input references grow. On a typical shared-memory machine, Cuttlefish constructed the graph for 100 human genomes in under 9 h, using ∼29 GB of memory. On 11 diverse conifer plant genomes, the compacted graph was constructed by Cuttlefish in under 9 h, using ∼84 GB of memory. The only other tool completing these tasks on the hardware took over 23 h using ∼126 GB of memory, and over 16 h using ∼289 GB of memory, respectively. Availability and implementation Cuttlefish is implemented in C++14, and is available under an open source license at https://github.com/COMBINE-lab/cuttlefish. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract A colored de Bruijn graph (also called a set of k-mer sets), is a set of k-mers with every k-mer assigned a set of colors. Colored de Bruijn graphs are used in a variety of applications, including variant calling, genome assembly, and database search. However, their size has posed a scalability challenge to algorithm developers and users. There have been numerous indexing data structures proposed that allow to store the graph compactly while supporting fast query operations. However, disk compression algorithms, which do not need to support queries on the compressed data and can thus be more space-efficient, have received little attention. The dearth of specialized compression tools has been a detriment to tool developers, tool users, and reproducibility efforts. In this paper, we develop a new tool that compresses colored de Bruijn graphs to disk, building on previous ideas for compression of k-mer sets and indexing colored de Bruijn graphs. We test our tool, called ESS-color, on various datasets, including both sequencing data and whole genomes. ESS-color achieves better compression than all evaluated tools and all datasets, with no other tool able to consistently achieve less than 44% space overhead. The software is available athttp://github.com/medvedevgroup/ESSColor. 
    more » « less
  3. Graph based non-linear reference structures such as variation graphs and colored de Bruijn graphs enable incorporation of full genomic diversity within a population. However, transitioning from a simple string-based reference to graphs requires addressing many computational challenges, one of which concerns accurately mapping sequencing read sets to graphs. Paired-end Illumina sequencing is a commonly used sequencing platform in genomics, where the paired-end distance constraints allow disambiguation of repeats. Many recent works have explored provably good index-based and alignment-based strategies for mapping individual reads to graphs. However, validating distance constraints efficiently over graphs is not trivial, and existing sequence to graph mappers rely on heuristics. We introduce a mathematical formulation of the problem, and provide a new algorithm to solve it exactly. We take advantage of the high sparsity of reference graphs, and use sparse matrix-matrix multiplications (SpGEMM) to build an index which can be queried efficiently by a mapping algorithm for validating the distance constraints. Effectiveness of the algorithm is demonstrated using real reference graphs, including a human MHC variation graph, and a pan-genome de-Bruijn graph built using genomes of 20 B. anthracis strains. While the one-time indexing time can vary from a few minutes to a few hours using our algorithm, answering a million distance queries takes less than a second. 
    more » « less
  4. Abstract For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively‐parallel, short‐read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired‐end sequencing to derive short contigs from de novo RAD data. Stacks version 2 employs a de Bruijn graph assembler to build and connect contigs from forward and reverse reads for each de novo RAD locus, which it then uses as a reference for read alignments. The new architecture allows all the individuals in a metapopulation to be considered at the same time as each RAD locus is processed. This enables a Bayesian genotype caller to provide precise SNPs, and a robust algorithm to phase those SNPs into long haplotypes, generating RAD loci that are 400–800 bp in length. To prove its recall and precision, we tested the software with simulated data and compared reference‐aligned and de novo analyses of three empirical data sets. Our study shows that the latest version of Stacks is highly accurate and outperforms other software in assembling and genotyping paired‐end de novo data sets. 
    more » « less
  5. Noncoding RNAs (ncRNAs) play important regulatory and functional roles in microorganisms, such as regulation of gene expression, signaling, protein synthesis, and RNA processing. Hence, their classification and quantification are central tasks toward the understanding of the function of the microbial community. However, the majority of the current metagenomic sequencing technologies generate short reads, which may contain only a partial secondary structure that complicates ncRNA homology detection. Meanwhile, de novo assembly of the metagenomic sequencing data remains challenging for complex communities. To tackle these challenges, we developed a novel algorithm called DRAGoM (Detection of RNA using Assembly Graph from Metagenomic data). DRAGoM first constructs a hybrid graph by merging an assembly string graph and an assembly de Bruijn graph. Then, it classifies paths in the hybrid graph and their constituent readsinto differentncRNA families based on both sequence and structural homology. Our benchmark experiments show that DRAGoMcan improve the performance and robustness over traditional approaches on the classification and quantification of a wide class of ncRNA families. 
    more » « less