This paper focuses on downlink channel state information (CSI) acquisition. A frequency division duplex (FDD) of massive MIMO system is considered. In such systems, the base station (BS) obtains the downlink CSI from the mobile users' feedback. A key consideration is to reduce the feedback overhead while ensuring that the BS accurately recovers the downlink CSI. Existing approaches often resort to dictionary-based or tensor/matrix decomposition techniques, which either exhibit unsatisfactory accuracy or induce heavy computational load at the mobile end. To circumvent these challenges, this work formulates the limited channel feedback problem as a quantized and compressed matrix recovery problem. The formulation presents a computationally challenging maximum likelihood estimation (MLE) problem. An ADMM algorithm leveraging existing harmonic retrieval tools is proposed to effectively tackle the optimization problem. Simulations show that the proposed method attains promising channel estimation accuracy, using a much smaller amount of feedback bits relative to existing methods.
more »
« less
This content will become publicly available on June 4, 2024
Overlay Cognitive Radio Using Symbol Level Precoding With Quantized CSI
Overlay cognitive radio (CR) networks include a primary and cognitive base station (BS) sharing the same frequency band. This paper focuses on designing a robust symbol-level pre-coding (SLP) scheme where the primary BS shares data and quantized channel state information (CSI) with the cognitive BS. The proposed approach minimizes the cognitive BS transmission power under symbol-wise Safety Margin (SM) constraints for both the primary and cognitive systems. We apply the additive quantization noise model to describe the statistics of the quantized PBS CSI and employ a stochastic constraint to formulate the optimization problem, which is then converted to be deterministic. Simulation results show that the robust SLP protects the primary users from the effect of the imperfect CSI and simultaneously offers significantly improved energy efficiency compared to nonrobust methods.
more »
« less
- NSF-PAR ID:
- 10465493
- Date Published:
- Journal Name:
- Proc. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Symbol-level precoding (SLP) based on the concept of constructive interference (CI) is shown to be superior to traditional block-level precoding (BLP), however at the cost of a symbol-by-symbol optimization during the precoding design. In this paper, we propose a CI-based block-level precoding (CI-BLP) scheme for the downlink transmission of a multi-user multiple-input single-output (MU-MISO) communication system, where we design a constant precoding matrix to a block of symbol slots to exploit CI for each symbol slot simultaneously. A single optimization problem is formulated to maximize the minimum CI effect over the entire block, thus reducing the computational cost of traditional SLP as the optimization problem only needs to be solved once per block. By leveraging the Karush-Kuhn-Tucker (KKT) conditions and the dual problem formulation, the original optimization problem is finally shown to be equivalent to a quadratic programming (QP) over a simplex. Numerical results validate our derivations and exhibit superior performance for the proposed CI-BLP scheme over traditional BLP and SLP methods, thanks to the relaxed block-level power constraint.more » « less
-
Space-time adaptive processing (STAP) is an effective method for multi-input multi-output (MIMO) radar systems to identify moving targets in the presence of multiple interferers. The idea of joint optimization in both spatial and temporal domains for radar detection is consistent with the symbol-level precoding (SLP) technique for MIMO communication systems, that optimizes the transmit waveform according to instantaneous transmitted symbols. Therefore, in this paper we combine STAP and constructive interference (CI)-based SLP techniques to realize dual-functional radar-communication (DFRC). The radar output signal-to-interference-plus-noise ratio (SINR) is maximized by jointly optimizing the transmit waveform and receive filter, while satisfying the communication quality-of-service (QoS) constraints and the constant modulus power constraint. An efficient algorithm based on majorization-minimization (MM) and nonlinear equality constrained alternative direction method of multipliers (neADMM) methods is proposed to solve the non-convex optimization problem. Simulation results verify the effectiveness of the proposed DFRC scheme and the associate algorithm.more » « less
-
In a time-division duplex (TDD) multiple antenna system the channel state information (CSI) can be estimated using reverse training. In multicell multiuser massive MIMO systems, pilot contamination degrades CSI estimation performance and adversely affects massive MIMO system performance. In this paper we consider a subspace-based semi-blind approach where we have training data as well as information bearing data from various users (both in-cell and neighboring cells) at the base station (BS). Existing subspace approaches assume that the interfering users from neighboring cells are always at distinctly lower power levels at the BS compared to the in-cell users. In this paper we do not make any such assumption. Unlike existing approaches, the BS estimates the channels of all users: in-cell and significant neighboring cell users, i.e., ones with comparable power levels at the BS. We exploit both subspace method using correlation as well as blind source separation using higher-order statistics. The proposed approach is illustrated via simulation examples.more » « less
-
Wireless links using massive MIMO transceivers are vital for next generation wireless communications networks. Precoding in Massive MIMO transmission requires accurate downlink channel state information (CSI). Many recent works have effectively applied deep learning (DL) to jointly train UE-side compression networks for delay domain CSI and a BS-side decoding scheme. Vitally, these works assume that the full delay domain CSI is available at the UE, but in reality, the UE must estimate the delay domain based on a limited number of frequency domain pilots. In this work, we propose a linear pilot-to-delay estimator (P2DE) that acquires the truncated delay CSI via sparse frequency pilots. We show the accuracy of the P2DE under frequency downsampling, and we demonstrate the P2DE’s efficacy when utilized with existing CSI estimation networks. Additionally, we propose to use trainable compressed sensing (CS) networks in a differential encoding network for time-varying CSI estimation, and we propose a new network, MarkovNet-ISTA-ENet (MN-IE), which combines a CS network for initial CSI estimation and multiple autoencoders to estimate the error terms. We demonstrate that MN-IE has better asymptotic performance than networks comprised of only one type of network.more » « less