skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stop, DROP, and ROA: effectiveness of defenses through the lens of DROP
Award ID(s):
2131987 2120399
PAR ID:
10465580
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Internet Measurement Conference (IMC)
Page Range / eLocation ID:
730 to 737
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Morphogenesis of living systems involves topological shape transformations which are highly unusual in the inanimate world. Here, we demonstrate that a droplet of a nematic liquid crystal changes its equilibrium shape from a simply connected tactoid, which is topologically equivalent to a sphere, to a torus, which is not simply connected. The topological shape transformation is caused by the interplay of nematic elastic constants, which facilitates splay and bend of molecular orientations in tactoids but hinders splay in the toroids. The elastic anisotropy mechanism might be helpful in understanding topology transformations in morphogenesis and paves the way to control and transform shapes of droplets of liquid crystals and related soft materials. 
    more » « less
  2. Aerodynamic breakup of vaporizing drops is commonly seen in many spray applications. While it is well known that vaporization can modulate interfacial instabilities, the impact of vaporization on drop aerobreakup is poorly understood. Detailed interface-resolved simulations were performed to systematically study the effect of vaporization, characterized by the Stefan number, on the drop breakup and acceleration for different Weber numbers and density ratios. It is observed that the resulting asymmetric vaporization rates and strengths of Stefan flow on the windward and leeward sides of the drop hinder bag development and prevent drop breakup. The critical Weber number thus generally increases with the Stefan number. The modulation of the boundary layer also contributes to a significant increase of drag coefficient. Numerical experiments were performed to affirm that the drop volume reduction plays a negligible role and the Stefan flow is the dominant reason for the breakup suppression and drag enhancement observed. 
    more » « less
  3. Abstract A soft viscoelastic drop has dynamics governed by the balance between surface tension, viscosity, and elasticity, with the material rheology often being frequency dependent, which are utilized in bioprinting technologies for tissue engineering and drop-deposition processes for splash suppression. We study the free and forced oscillations of a soft viscoelastic drop deriving (1) the dispersion relationship for free oscillations, and (2) the frequency response for forced oscillations, of a soft material with arbitrary rheology. We then restrict our analysis to the classical cases of a Kelvin–Voigt and Maxwell model, which are relevant to soft gels and polymer fluids, respectively. We compute the complex frequencies, which are characterized by an oscillation frequency and decay rate, as they depend upon the dimensionless elastocapillary and Deborah numbers and map the boundary between regions of underdamped and overdamped motions. We conclude by illustrating how our theoretical predictions for the frequency-response diagram could be used in conjunction with drop-oscillation experiments as a “drop vibration rheometer”, suggesting future experiments using either ultrasonic levitation or a microgravity environment. 
    more » « less