skip to main content


Title: Delayed leaf greening involves a major shift in the expression of cytosolic and mitochondrial ribosomes to plastid ribosomes in the highly phosphorus-use-efficient Hakea prostrata (Proteaceae)
Abstract Background and aims

Hakea prostrata(Proteaceae) is a highly phosphorus-use-efficient plant native to southwest Australia. It maintains a high photosynthetic rate at low leaf phosphorus (P) and exhibits delayed leaf greening, a convergent adaptation that increases nutrient-use efficiency. This study aimed to provide broad physiological and gene expression profiles across leaf development, uncovering pathways leading from young leaves as nutrient sinks to mature leaves as low-nutrient, energy-transducing sources.

Methods

To explore gene expression underlying delayed greening, we analysed a de novo transcriptome forH. prostrataacross five stages of leaf development. Photosynthesis and respiration rates, and foliar pigment, P and nitrogen (N) concentrations were determined, including the division of P into five biochemical fractions.

Key results

Transcripts encoding functions associated with leaf structure generally decreased in abundance across leaf development, concomitant with decreases in foliar concentrations of 85% for anthocyanins, 90% for P and 70% for N. The expression of genes associated with photosynthetic function increased during or after leaf expansion, in parallel with increases in photosynthetic pigments and activity, much later in leaf development than in species that do not have delayed greening. As leaves developed, transcript abundance for cytosolic and mitochondrial ribosomal proteins generally declined, whilst transcripts for chloroplast ribosomal proteins increased.

Conclusions

There was a much longer temporal separation of leaf cell growth from chloroplast development inH. prostratathan is found in species that lack delayed greening. Transcriptome-guided analysis of leaf development inH. prostrataprovided insight into delayed greening as a nutrient-saving strategy in severely phosphorus-impoverished landscapes.

 
more » « less
Award ID(s):
1923589
NSF-PAR ID:
10465605
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Plant and Soil
Volume:
496
Issue:
1-2
ISSN:
0032-079X
Format(s):
Medium: X Size: p. 7-30
Size(s):
["p. 7-30"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The inner-envelope K+ EFFLUX ANTIPORTERS (KEA) 1 and 2 are critical for chloroplast development, ion homeostasis, and photosynthesis. However, the mechanisms by which changes in ion flux across the envelope affect organelle biogenesis remained elusive. Chloroplast development requires intricate coordination between the nuclear genome and the plastome. Many mutants compromised in plastid gene expression (PGE) display a virescent phenotype, that is delayed greening. The phenotypic appearance of Arabidopsis thaliana kea1 kea2 double mutants fulfills this criterion, yet a link to PGE has not been explored. Here, we show that a simultaneous loss of KEA1 and KEA2 results in maturation defects of the plastid ribosomal RNAs. This may be caused by secondary structure changes of rRNA transcripts and concomitant reduced binding of RNA-processing proteins, which we documented in the presence of skewed ion homeostasis in kea1 kea2. Consequently, protein synthesis and steady-state levels of plastome-encoded proteins remain low in mutants. Disturbance in PGE and other signs of plastid malfunction activate GENOMES UNCOUPLED 1-dependent retrograde signaling in kea1 kea2, resulting in a dramatic downregulation of GOLDEN2-LIKE transcription factors to halt expression of photosynthesis-associated nuclear-encoded genes (PhANGs). PhANG suppression delays the development of fully photosynthesizing kea1 kea2 chloroplasts, probably to avoid progressing photo-oxidative damage. Overall, our results reveal that KEA1/KEA2 function impacts plastid development via effects on RNA-metabolism and PGE. 
    more » « less
  2. Summary

    Foliar fungal endophytes are one of the most diverse guilds of symbiotic fungi found in the photosynthetic tissues of every plant lineage, but it is unclear how plant environments and leaf resource availability shape their diversity.

    We explored correlations between leaf nutrient availability and endophyte diversity amongPinus muricataandVaccinium ovatumplants growing across a soil nutrient gradient spanning a series of coastal terraces in Mendocino, California.

    Endophyte richness decreased in plants with higher leaf nitrogen‐to‐phosphorus ratios for both host species, but increased with sodium, which may be toxic to fungi at high concentrations. Isolation frequency, a proxy of fungal biomass, was not significantly predicted by any of the same leaf constituents in the two plant species.

    We propose that stressed plants can exhibit both low foliar nutrients or high levels of toxic compounds, and that both of these stress responses predict endophyte species richness. Stressful conditions that limit growth of fungi may increase their diversity due to the suppression of otherwise dominating species. Differences between the host species in their endophyte communities may be explained by host specificity, leaf phenology, or microclimates.

     
    more » « less
  3. Abstract

    In plants,N‐acylethanolamines (NAEs) are most abundant in desiccated seeds and their levels decline during germination and early seedling establishment. However, endogenous NAE levels rise in seedlings when ABA or environmental stress is applied, and this results in an inhibition of further seedling development. When the most abundant, polyunsaturated NAEs of linoleic acid (18:2) and linolenic acid (18:3) were exogenously applied, seedling development was affected in an organ‐specific manner. NAE 18:2 primarily affected primary root elongation and NAE 18:3 primarily affected cotyledon greening and expansion and overall seedling growth. The molecular components and signaling mechanisms involved in this pathway are not well understood. In addition, the bifurcating nature of this pathway provides a unique system in which to study the spatial aspects and interaction of these lipid‐specific and organ‐targeted signaling pathways. Using whole transcriptome sequencing (RNA‐seq) and differential expression analysis, we identified early (1–3 hr) transcriptional changes induced by the exogenous treatment of NAE 18:2 and NAE 18:3 in cotyledons, roots, and seedlings. These two treatments led to a significant enrichment in ABA‐response and chitin‐response genes in organs where the treatments led to changes in development. InArabidopsisseedlings, NAE 18:2 treatment led to the repression of genes involved in cell wall biogenesis and organization in roots and seedlings. In addition, cotyledons, roots, and seedlings treated with NAE 18:3 also showed a decrease in transcripts that encode proteins involved in growth processes. NAE 18:3 also led to changes in the abundance of transcripts involved in the modulation of chlorophyll biosynthesis and catabolism in cotyledons. Overall, NAE 18:2 and NAE 18:3 treatment led to lipid‐type and organ‐specific gene expression changes that include overlapping and non‐overlapping gene sets. These data will provide future, rich opportunities to examine the genetic pathways involved in transducing early signals into downstream physiological changes in seedling growth.

     
    more » « less
  4. Summary

    Bryophytes harbour microbiomes, including diverse communities of fungi. The molecular mechanisms by which perennial mosses interact with these fungal partners along their senescence gradients are unknown, yet this is an ideal system to study variation in gene expression associated with trophic state transitions. We investigated differentially expressed genes of fungal communities and their hostDicranum scopariumacross its naturally occurring senescence gradient using a metatranscriptomic approach. Higher activity of fungal nutrient‐related (carbon, nitrogen, phosphorus and sulfur) transporters and Carbohydrate‐Active enZyme (CAZy) genes was detected toward the bottom, partially decomposed, layer of the moss. The most prominent variation in the expression levels of fungal nutrient transporters was from inorganic nitrogen‐related transporters, whereas the breakdown of organonitrogens was detected as the most enriched gene ontology term for the hostD. scoparium, for those transcripts having higher expression in the partially decomposed layer. The abundance of bacterial rRNA transcripts suggested that more living members ofCyanobacteriaare associated with the photosynthetic layer ofD. scoparium, while members ofRhizobialesare detected throughout the gametophytes. Plant genes for specific fungal–plant communication, including defense responses, were differentially expressed, suggesting that different genetic pathways are involved in plant‐microbe crosstalk in photosynthetic tissues compared to partially decomposed tissues.

     
    more » « less
  5. Abstract

    Few previous studies have described the patterns of leaf characteristics in response to nutrient availability and depth in the crown. Sugar maple has been studied for both sensitivity to light, as a shade-tolerant species, and sensitivity to soil nutrient availability, as a species in decline due to acid rain. To explore leaf characteristics from the top to bottom of the canopy, we collected leaves along a vertical gradient within mature sugar maple crowns in a full-factorial nitrogen (N) by phosphorus (P) addition experiment in three forest stands in central New Hampshire, USA. Thirty-two of the 44 leaf characteristics had significant relationships with depth in the crown, with the effect of depth in the crown strongest for leaf area, photosynthetic pigments and polyamines. Nitrogen addition had a strong impact on the concentration of foliar N, chlorophyll, carotenoids, alanine and glutamate. For several other elements and amino acids, N addition changed patterns with depth in the crown. Phosphorus addition increased foliar P and boron (B); it also caused a steeper increase of P and B with depth in the crown. Since most of these leaf characteristics play a direct or indirect role in photosynthesis, metabolic regulation or cell division, studies that ignore the vertical gradient may not accurately represent whole-canopy performance.

     
    more » « less