Observed scatter in the Ly
- Award ID(s):
- 1812458
- PAR ID:
- 10465628
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 955
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 138
- Size(s):
- Article No. 138
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The observed large-scale scatter in Ly α opacity of the intergalactic medium at z < 6 implies large fluctuations in the neutral hydrogen fraction that are unexpected long after reionization has ended. A number of models have emerged to explain these fluctuations that make testable predictions for the relationship between Ly α opacity and density. We present selections of z = 5.7 Ly α -emitting galaxies (LAEs) in the fields surrounding two highly opaque quasar sightlines with long Ly α troughs. The fields lie toward the z = 6.0 quasar ULAS J0148+0600, for which we reanalyze previously published results using improved photometric selection, and toward the z = 6.15 quasar SDSS J1250+3130, for which results are presented here for the first time. In both fields, we report a deficit of LAEs within 20 h −1 Mpc of the quasar. The association of highly opaque sightlines with galaxy underdensities in these two fields is consistent with models in which the scatter in Ly α opacity is driven by large-scale fluctuations in the ionizing UV background or by an ultra-late reionization that has not yet concluded at z = 5.7.more » « less
-
Abstract Understanding when and how reionization happened is crucial for studying the early structure formation and the properties of the first galaxies in the Universe. At
z > 5.5, the observed intergalactic medium (IGM) optical depth shows a significant scatter, indicating an inhomogeneous reionization process. However, the nature of the inhomogeneous reionization remains debated. A SPectroscopic survey of biased halos In the Reionization Era (ASPIRE) is a JWST Cycle 1 program that has spectroscopically identified >400 [Oiii ] emitters in 25 quasar fields atz > 6.5. Combined with deep ground-based optical spectroscopy of ASPIRE quasars, the ASPIRE program provides the current largest sample for IGM-galaxy connection studies during cosmic reionization. We present the first results of IGM effective optical depth measurements around [Oiii ] emitters using 14 ASPIRE quasar fields. We find the IGM transmission is tightly related to reionization era galaxies to the extent that a significant excess of Lyα transmission exists around [Oiii ] emitters. We measure the stacked IGM effective optical depth of IGM patches associated with [Oiii ] emitters and find they reach the same IGM effective optical depth at leastd z ∼ 0.1 ahead of those IGM patches where no [Oiii ] emitters are detected, supporting earlier reionization around [Oiii ] emitters. Our results indicate an enhancement in IGM Lyα transmission around [Oiii ] emitters at scales beyond 25h −1cMpc, consistent with the predicted topology of reionization from fluctuating UV background models. -
ABSTRACT The presence of excess scatter in the Ly-α forest at z ∼ 5.5, together with the existence of sporadic extended opaque Gunn-Peterson troughs, has started to provide robust evidence for a late end of hydrogen reionization. However, low data quality and systematic uncertainties complicate the use of Ly-α transmission as a precision probe of reionization’s end stages. In this paper, we assemble a sample of 67 quasar sightlines at z > 5.5 with high signal-to-noise ratios of >10 per ≤15 km s−1 spectral pixel, relying largely on the new XQR-30 quasar sample. XQR-30 is a large program on VLT/X-Shooter which obtained deep (SNR > 20 per pixel) spectra of 30 quasars at z > 5.7. We carefully account for systematics in continuum reconstruction, instrumentation, and contamination by damped Ly-α systems. We present improved measurements of the mean Ly-α transmission over 4.9 < z < 6.1. Using all known systematics in a forward modelling analysis, we find excellent agreement between the observed Ly-α transmission distributions and the homogeneous-UVB simulations Sherwood and Nyx up to z ≤ 5.2 (<1σ), and mild tension (∼2.5σ) at z = 5.3. Homogeneous UVB models are ruled out by excess Ly-α transmission scatter at z ≥ 5.4 with high confidence (>3.5σ). Our results indicate that reionization-related fluctuations, whether in the UVB, residual neutral hydrogen fraction, and/or IGM temperature, persist in the intergalactic medium until at least z = 5.3 (t = 1.1 Gyr after the big bang). This is further evidence for a late end to reionization.more » « less
-
Abstract The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) is designed to detect and measure the redshifts of more than 1 million Ly
α emitting galaxies (LAEs) 1.88 <z < 3.52. In addition to its cosmological measurements, these data enable studies of Lyα spectral profiles and the underlying radiative transfer. Using the roughly half a million LAEs in the HETDEX Data Release 3, we stack various subsets to obtain the typical Lyα profile for thez ∼ 2–3 epoch and to understand their physical properties. We find clear absorption wings around Lyα emission, which extend ∼2000 km s−1both redward and blueward of the central line. Using far-UV spectra of nearby (0.002 <z < 0.182) LAEs in the COS Legacy Archive Spectroscopic Survey treasury and optical/near-IR spectra of 2.8 <z < 6.7 LAEs in the Multi Unit Spectroscopic-Wide survey, we observe absorption profiles in both redshift regimes. Dividing the sample by volume density shows that the troughs increase in higher-density regions. This trend suggests that the depth of the absorption is dependent on the local density of objects near the LAE, a geometry that is similar to damped Lyα systems. Simple simulations of Lyα radiative transfer can produce similar troughs due to absorption of light from background sources by Hi gas surrounding the LAEs. -
ABSTRACT The reionization of hydrogen is closely linked to the first structures in the Universe, so understanding the timeline of reionization promises to shed light on the nature of these early objects. In particular, transmission of Lyman alpha (Ly α) from galaxies through the intergalactic medium (IGM) is sensitive to neutral hydrogen in the IGM, so can be used to probe the reionization timeline. In this work, we implement an improved model of the galaxy UV luminosity to dark matter halo mass relation to infer the volume-averaged fraction of neutral hydrogen in the IGM from Ly α observations. Many models assume that UV-bright galaxies are hosted by massive dark matter haloes in overdense regions of the IGM, so reside in relatively large ionized regions. However, observations and N-body simulations indicate that scatter in the UV luminosity–halo mass relation is expected. Here, we model the scatter (though we assume the IGM topology is unaffected) and assess the impact on Ly α visibility during reionization. We show that UV luminosity–halo mass scatter reduces Ly α visibility compared to models without scatter, and that this is most significant for UV-bright galaxies. We then use our model with scatter to infer the neutral fraction, $\overline{x}_{\mathrm{ H}\,{\small I}}$, at z ∼ 7 using a sample of Lyman-break galaxies in legacy fields. We infer $\overline{x}_{\mathrm{ H}\,{\small I}} = 0.55_{-0.13}^{+0.11}$ with scatter, compared to $\overline{x}_{\mathrm{ H}\,{\small I}} = 0.59_{-0.14}^{+0.12}$ without scatter, a very slight decrease and consistent within the uncertainties. Finally, we place our results in the context of other constraints on the reionization timeline and discuss implications for future high-redshift galaxy studies.more » « less