Abstract Disturbance response and recovery are increasingly important in microbial ecology, as microbes may recover from disturbances differently than macro communities. Past disturbances can alter microbial community structure and their response to subsequent disturbance events, but it remains unclear if the same recovery patterns persist after long‐term exposure to stress. Here, we compare bacterial community composition in a community that experienced 2 years of monthly salinity addition disturbances with a community that has not experienced salinity additions. We then track the response and recovery to an additional salinity addition based on past disturbance exposure. We tested the following hypotheses: first, communities with a repeated disturbance history will have a different community composition than communities without a disturbance history; second, communities exposed to repeated disturbances will undergo a different recovery trajectory than communities experiencing a novel disturbance. We find that repeated disturbances alter community composition and affect community response and recovery to a subsequent disturbance after 2 years, primarily through increased resistance. This work enhances our understanding of microbial temporal dynamics and suggests that novel disturbances may pose a threat to microbial community structure and function.
more »
« less
Assessing mechanisms for microbial taxa and community dynamics using process models
Impact statement One fundamental goal in microbial ecology is to predict how microbial diversity is changed across space and time. Although spatial patterns of microbial communities have been recently intensively examined, our understanding of microbial temporal dynamics is rudimentary, primarily due to the lack of appropriate experimental data and theoretical framework. By reconciling niche and neutral perspectives, this study developed a novel process model‐based framework to effectively encapsulate microbial species temporal dynamics, which is powerful for quantitatively assessing the assembly mechanisms underlying microbial community dynamics. This study represents a significant advance in explaining microbial temporal dynamics toward predictive microbial community ecology.
more »
« less
- Award ID(s):
- 2025558
- PAR ID:
- 10465732
- Date Published:
- Journal Name:
- mLife
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2770-100X
- Page Range / eLocation ID:
- 239 to 252
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microbial ecology research requires sampling strategies that accurately represent the microbial community under study. These communities must typically be transported from the collection location to the laboratory and then stored until they can be processed. However, there is a lack of consensus on how best to preserve microbial communities during transport and storage. Here, we evaluated dimethyl sulfoxide, ethylenediamine tetraacetic acid, saturated salt (DESS) solution as a broadly applicable preservative for microbial ecology experiments. We stored fungus gardens grown by the ant Trachymyrmex septentrionalis in DESS, 15% glycerol, and phosphate buffered saline (PBS) to test their impact on the fungus garden microbial community. Variation in microbial community structure due to differences in preservative type was minimal when compared to variation between ant colonies. Additionally, DESS preserved the structure of a defined mock community more faithfully than either 15% glycerol or PBS. DESS is inexpensive, easy to transport, and effective in preserving microbial community structure. We therefore conclude that DESS is a valuable preservative for use in microbial ecology research.more » « less
-
Abstract The built environment provides an excellent setting for interdisciplinary research on the dynamics of microbial communities. The system is simplified compared to many natural settings, and to some extent the entire environment can be manipulated, from architectural design to materials use, air flow, human traffic, and capacity to disrupt microbial communities through cleaning. Here, we provide an overview of the ecology of the microbiome in the built environment. We address niche space and refugia, population, and community (metagenomic) dynamics, spatial ecology within a building, including the major microbial transmission mechanisms, as well as evolution. We also address landscape ecology, connecting microbiomes between physically separated buildings. At each stage, we pay particular attention to the actual and potential interface between disciplines, such as ecology, epidemiology, materials science, and human social behavior. We end by identifying some opportunities for future interdisciplinary research on the microbiome of the built environment.more » « less
-
In coral reefs and adjacent seagrass meadow and mangrove environments, short temporal scales (i.e. tidal, diurnal) may have important influences on ecosystem processes and community structure, but these scales are rarely investigated. This study examines how tidal and diurnal forcings influence pelagic microorganisms and nutrient dynamics in 3 important and adjacent coastal biomes: mangroves, coral reefs, and seagrass meadows. We sampled for microbial ( Bacteria and Archaea ) community composition, cell abundances and environmental parameters at 9 coastal sites on St. John, US Virgin Islands that spanned 4 km in distance (4 coral reefs, 2 seagrass meadows and 3 mangrove locations within 2 larger bays). Eight samplings occurred over a 48 h period, capturing day and night microbial dynamics over 2 tidal cycles. The seagrass and reef biomes exhibited relatively consistent environmental conditions and microbial community structure but were dominated by shifts in picocyanobacterial abundances that were most likely attributed to diel dynamics. In contrast, mangrove ecosystems exhibited substantial daily shifts in environmental parameters, heterotrophic cell abundances and microbial community structure that were consistent with the tidal cycle. Differential abundance analysis of mangrove-associated microorganisms revealed enrichment of pelagic oligotrophic taxa during high tide and enrichment of putative sediment-associated microbes during low tide. Our study underpins the importance of tidal and diurnal time scales in structuring coastal microbial and nutrient dynamics, with diel and tidal cycles contributing to a highly dynamic microbial environment in mangroves, and time of day likely contributing to microbial dynamics in seagrass and reef biomes.more » « less
-
Tamaki, Hideyuki (Ed.)ABSTRACT Glaciers are rapidly receding under climate change. A melting cryosphere will dramatically alter global sea levels, carbon cycling, and water resource availability. Glaciers host rich biotic communities that are dominated by microbial diversity, and this biodiversity can impact surface albedo, thereby driving a feedback loop between biodiversity and cryosphere melt. However, the microbial diversity of glacier ecosystems remains largely unknown outside of major ice sheets, particularly from a temporal perspective. Here, we characterized temporal dynamics of bacteria, eukaryotes, and algae on the Paradise Glacier, Mount Rainier, USA, over nine time points spanning the summer melt season. During our study, the glacier surface steadily darkened as seasonal snow melted and darkening agents accumulated until new snow fell in late September. From a community-wide perspective, the bacterial community remained generally constant while eukaryotes and algae exhibited temporal progression and community turnover. Patterns of individual taxonomic groups, however, were highly stochastic. We found little support for our a priori prediction that autotroph abundance would peak before heterotrophs. Notably, two different trends in snow algae emerged—an abundant early- and late-season operational taxonomic unit (OTU) with a different midsummer OTU that peaked in August. Overall, our results highlight the need for temporal sampling to clarify microbial diversity on glaciers and that caution should be exercised when interpreting results from single or few time points. IMPORTANCE Microbial diversity on mountain glaciers is an underexplored component of global biodiversity. Microbial presence and activity can also reduce the surface albedo or reflectiveness of glaciers, causing them to absorb more solar radiation and melt faster, which in turn drives more microbial activity. To date, most explorations of microbial diversity in the mountain cryosphere have only included single time points or focused on one microbial community (e.g., bacteria). Here, we performed temporal sampling over a summer melt season for the full microbial community, including bacteria, eukaryotes, and fungi, on the Paradise Glacier, Washington, USA. Over the summer, the bacterial community remained generally constant, whereas eukaryote and algal communities temporally changed through the melt season. Individual taxonomic groups, however, exhibited considerable stochasticity. Overall, our results highlight the need for temporal sampling on glaciers and that caution should be exercised when interpreting results from single or few time points.more » « less
An official website of the United States government

