skip to main content


Title: Comparison of Infrastructure- and Onboard Vehicle-Based Sensor Systems in Measuring Operational Safety Assessment (OSA) Metrics

The operational safety of Automated Driving System (ADS)-Operated Vehicles (AVs) are a rising concern with the deployment of AVs as prototypes being tested and also in commercial deployment. The robustness of safety evaluation systems is essential in determining the operational safety of AVs as they interact with human-driven vehicles. Extending upon earlier works of the Institute of Automated Mobility (IAM) that have explored the Operational Safety Assessment (OSA) metrics and infrastructure-based safety monitoring systems, in this work, we compare the performance of an infrastructure-based Light Detection And Ranging (LIDAR) system to an onboard vehicle-based LIDAR system in testing at the Maricopa County Department of Transportation SMARTDrive testbed in Anthem, Arizona. The sensor modalities are located in infrastructure and onboard the test vehicles, including LIDAR, cameras, a real-time differential GPS, and a drone with a camera. Bespoke localization and tracking algorithms are created for the LIDAR and cameras. In total, there are 26 different scenarios of the test vehicles navigating the testbed intersection; for this work, we are only considering car following scenarios. The LIDAR data collected from the infrastructure-based and onboard vehicle-based sensors system are used to perform object detection and multi-target tracking to estimate the velocity and position information of the test vehicles and use these values to compute OSA metrics. The comparison of the performance of the two systems involves the localization and tracking errors in calculating the position and the velocity of the subject vehicle, with the real-time differential GPS data serving as ground truth for velocity comparison and tracking results from the drone for OSA metrics comparison.

 
more » « less
Award ID(s):
2137295
NSF-PAR ID:
10495587
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
SAE Technical Paper
Date Published:
Format(s):
Medium: X
Location:
Detroit, Michigan, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. Data-driven driving safety assessment is crucial in understanding the insights of traffic accidents caused by dangerous driving behaviors. Meanwhile, quantifying driving safety through well-defined metrics in real-world naturalistic driving data is also an important step for the operational safety assessment of automated vehicles (AV). However, the lack of flexible data acquisition methods and fine-grained datasets has hindered progress in this critical area. In response to this challenge, we propose a novel dataset for driving safety metrics analysis specifically tailored to car-following situations. Leveraging state-of-the-art Artificial Intelligence (AI) technology, we employ drones to capture high-resolution video data at 12 traffic scenes in the Phoenix metropolitan area. After that, we developed advanced computer vision algorithms and semantically annotated maps to extract precise vehicle trajectories and leader-follower relations among vehicles. These components, in conjunction with a set of defined metrics based on our prior work on Operational Safety Assessment (OSA) by the Institute of Automated Mobility (IAM), allow us to conduct a detailed analysis of driving safety. Our results reveal the distribution of these metrics under various real-world car-following scenarios and characterize the impact of different parameters and thresholds in the metrics. By enabling a data-driven approach to address driving safety in car-following scenarios, our work can empower traffic operators and policymakers to make informed decisions and contribute to a safer, more efficient future for road transportation systems.

     
    more » « less
  2. Drone-based last-mile delivery is an emerging technology that uses drones loaded onto a truck to deliver parcels to customers. In this paper, we introduce a fully automated system for drone-based last-mile delivery through incorporation of autonomous vehicles (AVs). A novel problem called the autonomous vehicle routing problem with drones (A-VRPD) is defined. A-VRPD is to select AVs from a pool of available AVs based on crowd sourcing, assign selected AVs to customer groups, and schedule routes for selected AVs to optimize the total operational cost. We formulate A-VRPD as a Mixed Integer Linear Program (MILP) and propose an optimization framework to solve the problem. A greedy algorithm is also developed to significantly improve the running time for large-scale delivery scenarios. Extensive simulations were conducted taking into account real-world operational costs for different types of AVs, traveled distances calculated considering the real-time traffic conditions using Google Map API, and varying load capacities of AVs. We evaluated the performance in comparison with two different state-of-the-art solutions: an algorithm designed to address the traditional vehicle routing problem with drones (VRP-D), which involves human-operated trucks working in tandem with drones to deliver parcels, and an algorithm for the two echelon vehicle routing problem (2E-VRP), wherein parcels are first transported to satellite locations and subsequently delivered from those satellites to the customers. The results indicate a substantial increase in profits for both the delivery company and vehicle owners compared with the state-of-the-art algorithms. 
    more » « less
  3. Autonomous vehicles (AVs) use diverse sensors to understand their surroundings as they continually make safety-critical decisions. However, establishing trust with other AVs is a key prerequisite because safety-critical decisions cannot be made based on data shared from untrusted sources. Existing protocols require an infrastructure network connection and a third-party root of trust to establish a secure channel, which are not always available.In this paper, we propose a sensor-fusion approach for mobile trust establishment, which combines GPS and visual data. The combined data forms evidence that one vehicle is nearby another, which is a strong indication that it is not a remote adversary hence trustworthy. Our preliminary experiments show that our sensor-fusion approach achieves above 80% successful pairing of two legitimate vehicles observing the same object with 5 meters of error. Based on these preliminary results, we anticipate that a refined approach can support fuzzy trust establishment, enabling better collaboration between nearby AVs. 
    more » « less
  4. To create safer and less congested traffic operating environments researchers at the University of Tennessee at Chattanooga (UTC) and the Georgia Tech Research Institute (GTRI) have fostered a vision of cooperative sensing and cooperative mobility. This vision is realized in a mobile application that combines visual data extracted from cameras on roadway infrastructure with a user’s coordinates via a GPS-enabled device to create a visual representation of the driving or walking environment surrounding the application user. By merging the concepts of computer vision, object detection, and mono-vision image depth calculation, this application is able to gather absolute Global Positioning System (GPS) coordinates from a user’s mobile device and combine them with relative GPS coordinates determined by the infrastructure cameras and determine the position of vehicles and pedestrians without the knowledge of their absolute GPS coordinates. The joined data is then used by an iOS mobile application to display a map showing the location of other entities such as vehicles, pedestrians, and obstacles creating a real-time visual representation of the surrounding area prior to the area appearing in the user’s visual perspective. Furthermore, a feature was implemented to display routing by using the results of a traffic scenario that was analyzed by rerouting algorithms in a simulated environment. By displaying where proximal entities are concentrated and showing recommended optional routes, users have the ability to be more informed and aware when making traffic decisions helping ensure a higher level of overall safety on our roadways. This vision would not be possible without high speed gigabit network infrastructure installed in Chattanooga, Tennessee and UTC’s wireless testbed, which was used to test many functions of this application. This network was required to reduce the latency of the massive amount of data generated by the infrastructure and vehicles that utilize the testbed; having results from this data come back in real-time is a critical component. 
    more » « less
  5. The latest developments in vehicle-to-infrastructure (V2I) and vehicle-to-anything (V2X) technologies enable all the entities in the transportation system to communicate and collaborate to optimize transportation safety, mobility, and equity at the system level. On the other hand, the community of researchers and developers is becoming aware of the critical role of roadway infrastructure in realizing automated driving. In particular, intelligent infrastructure systems, which leverage modern sensors, artificial intelligence, and communication capabilities, can provide critical information and control support to connected and/or automated vehicles to fulfill functions that are infeasible for automated vehicles alone due to technical or cost considerations. However, there is limited research on formulating and standardizing the intelligence levels of road infrastructure to facilitate the development, as the SAE automated driving levels have done for automated vehicles. This article proposes a five-level intelligence definition for intelligent roadway infrastructure, namely, connected and automated highway (CAH). The CAH is a subsystem of the more extensive collaborative automated driving system (CADS), along with the connected automated vehicle (CAV) subsystem. Leveraging the intelligence definition of CAH, the intelligence definition for the CADS is also defined. Examples of how the CAH at different levels operates with the CAV in the CADS are also introduced to demonstrate the dynamic allocation of various automated driving tasks between different entities in the CADS.
     
    more » « less