Connected and Automated Vehicles (CAVs) have the potential to enhance traffic safety and efficiency. In contrast, aligning both vehicles’ utility with system-level interests in scenarios with conflicting road rights is challenging, hindering cooperative driving. This paper advocates a game theory model, which strategically incorporates deceptive information within incomplete information vehicle games, operating under the premise of imprecise perceptions. The equilibria derived reveal that CAVs can exploit deceptive strategies, not only gaining advantages that undermine the utility of the other vehicle in the game but also posing hazards to the overall benefits of the transportation system. Vast experiments were conducted, simulating diverse inbound traffic conditions at an intersection, validating the detrimental impact on efficiency and safety resulting from CAVs with perception uncertainties, and employing deceptive maneuvers within connected and automated transportation systems. Finally, the paper proposes feasible solutions and potential countermeasures to address the adverse consequences of deception in connected and automated transportation systems. It concludes by calling for integrating these insights into future research endeavors and pursuing to fully realize the potential and expectations of CAVs in enhancing the whole traffic performance.
more »
« less
Cybersecurity on Connected and Automated Transportation Systems: A Survey
Connected and automated vehicles (CAVs) provide various valuable and advanced services to manufacturers, owners, mobility service providers, and transportation authorities. As a result, a large number of CAV applications have been proposed to improve the safety, mobility, and sustainability of the transportation system. With the increasing connectivity and automation, cybersecurity of the connected and automated transportation system (CATS) has raised attention to the transportation community in recent years. Vulnerabilities in CAVs can lead to breakdowns in the transportation system and compromise safety (e.g., causing crashes), performance (e.g., increasing congestion and reducing capacity), and fairness (e.g., vehicles fooling traffic signals). This paper presents our perspective on CATS cybersecurity via surveying recent pertinent studies focusing on the transportation system level, ranging from individual and multiple vehicles to the traffic network (including infrastructure). It also highlights threat analysis and risk assessment (TARA) tools and evaluation platforms, particularly for analyzing the CATS cybersecurity problem. Finally, this paper will provide valuable insights into developing secure CAV applications and investigating remaining open cybersecurity challenges that must be addressed.
more »
« less
- PAR ID:
- 10510624
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Intelligent Vehicles
- Volume:
- 9
- Issue:
- 1
- ISSN:
- 2379-8858
- Page Range / eLocation ID:
- 1382 to 1401
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Connected autonomous vehicles (CAVs) have the potential to deal with the steady increase in road traffic while solving transportation related issues such as traffic congestion, pollution, and road safety. Therefore, CAVs are becoming increasingly popular and viewed as the next generation transportation solution. Although modular advancements have been achieved in the development of CAVs, these efforts are not fully integrated to operationalize CAVs in realistic driving scenarios. This paper surveys a wide range of efforts reported in the literature about the CAV developments, summarizes the CAV impacts from a statistical perspective, explores current state of practice in the field of CAVs in terms of autonomy technologies, communication backbone, and computation needs. Furthermore, this paper provides general guidance on how transportation infrastructures need to be prepared in order to effectively operationalize CAVs. The paper also identifies challenges that need to be addressed in near future for effective and reliable adoption of CAVs.more » « less
-
A large number of Connected and Automated Vehicle (CAV) applications are being designed, developed, and deployed in order to greatly improve our transportation systems in terms of safety, mobility, and reducing environmental impacts. These benefits can be quantified by a variety of performance measures that are often cited in the literature. However, most of these CAV applications are typically designed to improve transportation systems only in a particular dimension, usually focusing on either safety, mobility, or the environment. Very few research papers have considered a wider range or combination of performance measures across multiple dimensions, examining potential co-benefits or tradeoffs between these measures. For example, you can design a CAV application that greatly improves safety, but it might come at the cost of reducing traffic throughput. Further, the design of the CAV applications is often static and limited to specific traffic scenarios and conditions. CAVs that can adapt to different conditions, and be “tunable” for different societal needs will have much greater impact and versatility. In this presentation, we examine various co-benefits and tradeoffs of current CAV applications and consider how we can design these systems to have greater flexibility when it comes to deployment. We cite not only different CAV applications evaluated in simulation, but also real-world CAV deployments that operate on various testbeds, such as the Innovation Corridor located in Riverside, California. Based on this analysis, we can consider several new research directions for future CAV deployments.more » « less
-
null (Ed.)Connected and automated vehicles (CAVs) will undoubtedly transform many aspects of transportation systems in the future. In the meantime, transportation agencies must make investment and policy decisions to address the future needs of the transportation system. This research provides much-needed guidance for agencies about planning-level capacities in a CAV future and quantify Highway Capacity Manual (HCM) capacities as a function of CAV penetration rates and vehicle behaviors such as car-following, lane change, and merge. As a result of numerous uncertainties on CAV implementation policies, the study considers many scenarios including variations in parameters (including CAV gap/headway settings), roadway geometry, and traffic characteristics. More specifically, this study considers basic freeway, freeway merge, and freeway weaving segments in which various simulation scenarios are evaluated using two major CAV applications: cooperative adaptive cruise control and advanced merging. Data from microscopic traffic simulation are collected to develop capacity adjustment factors for CAVs. Results show that the existence of CAVs in the traffic stream can significantly enhance the roadway capacity (by as much as 35% to 40% under certain cases), not only on basic freeways but also on merge and weaving segments, as the CAV market penetration rate increases. The human driver behavior of baseline traffic also affects the capacity benefits, particularly at lower CAV market penetration rates. Finally, tables of capacity adjustment factors and corresponding regression models are developed for HCM implementation of the results of this study.more » « less
-
Platoon formation with connected and automated vehicles (CAVs) in a mixed traffic environment poses significant challenges due to the presence of human-driven vehicles (HDVs) with unknown dynamics and control actions. In this paper, we develop a safety-prioritized receding horizon control framework for creating platoons of HDVs preceded by a CAV Our framework ensures indirect control of the following HDVs by directly controlling the leading CAV given the safety constraints. The framework utilizes a data-driven prediction model that is based on the recursive least squares algorithm and the constant time headway relative velocity car-following model to predict future trajectories of human-driven vehicles. To demonstrate the efficacy of the proposed framework, we conduct numerical simulations and provide the associated scalability, robustness, and performance analyses.more » « less