skip to main content


This content will become publicly available on September 27, 2024

Title: Enhanced Magnetic Anisotropy for Reprogrammable High‐Force‐Density Microactuators
Abstract

The precise control of magnetic properties at the microscale has transformative potential in healthcare and human‐robot interaction. This research focuses on understanding the magnetic interactions in nanostructure assemblies responsible for microactuation. By combining experimental measurements and micromagnetic simulations, the interactions in both nanocube and nanochain assemblies are elucidated. Hysteresis measurements and first‐order reversal curves (FORC) reveal that the spatial arrangement of these assemblies governs their collective magnetism. A critical concentration threshold is observed where a transition from ferromagnetic‐like to antiferromagnetic‐like coupling occurs. Leveraging the high uniaxial anisotropy of 1D nanochains, the remanent magnetization of assembled chain structures is maximized for efficient magneto‐mechanical energy transduction. By utilizing an optimized magnetic nanostructure concentration, a flexible film is fabricated, and its significantly enhanced mechanical deformation response to a small magnetic field, surpassing conventional particle‐based samples by a factor of five, is demonstrated. Demonstrating excellent transduction efficiency, visible deformations such as bending and S‐shaped twisting modes are achieved with an applied field of less than 400 Oe. Furthermore, the reprogrammability of the actuator, achieving a U‐shaped bending mode by altering its magnetization profile, is showcased. This research provides valuable insights for designing reconfigurable and effective microactuators and devices at significantly smaller scales than previously possible.

 
more » « less
NSF-PAR ID:
10466038
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
2
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential is not yet realized in the field of magnetism. This work shows a direct connection between magnetic response functions in mechanically strained samples of Mn3O4and MnV2O4and stripe‐like patternings of the bulk magnetization which appear below known magnetostructural transitions. Building off previous magnetic force microscopy data, a small‐angle neutron scattering is used to show that these patterns represent distinctive magnetic phenomena which extend throughout the bulk of two separate materials, and further are controllable via applied magnetic field and mechanical stress. These results are unambiguously connected to the anomalously large magnetoelastic and magnetodielectric response functions reported for these materials, by performing susceptibility measurements on the same crystals and directly correlating local and macroscopic data.

     
    more » « less
  2. The effects of magnetostatic coupling on switching dynamics are investigated for assemblies of patterned disc-shaped magnetic elements using mumax3 micromagnetic simulations. The arrangements of coupled dots were designed using information about the switching fields and reversal dynamics of isolated dots, as well as the magnitude of the magnetic stray fields they generate. The magnetization dynamics for individual dots was examined during a reversal cascade down a linear chain of dots. The magnetization angle fluctuated much more when neighboring dots have opposite magnetization directions, consistent with a lower energy barrier for reversal. The data were analyzed to differentiate thermal and interaction field effects. While many systems of interacting nanomagnets have been analyzed in terms of empirical models, the dynamical energy barrier approach offers a methodology with a more detailed and physically intuitive way to study both simple systems like the chain and more complex assemblies such as artificial spin ice. 
    more » « less
  3. Abstract

    2D metamaterials have immense potential in acoustics, optics, and electromagnetic applications due to their unique properties and ability to conform to curved substrates. Active metamaterials have attracted significant research attention because of their on‐demand tunable properties and performances through shape reconfigurations. 2D active metamaterials often achieve active properties through internal structural deformations, which lead to changes in overall dimensions. This demands corresponding alterations of the conforming substrate, or the metamaterial fails to provide complete area coverage, which can be a significant limitation for their practical applications. To date, achieving area‐preserving active 2D metamaterials with distinct shape reconfigurations remains a prominent challenge. In this paper, magneto‐mechanical bilayer metamaterials are presented that demonstrate area density tunability with area‐preserving capability. The bilayer metamaterials consist of two arrays of magnetic soft materials with distinct magnetization distributions. Under a magnetic field, each layer behaves differently, which allows the metamaterial to reconfigure its shape into multiple modes and to significantly tune its area density without changing its overall dimensions. The area‐preserving multimodal shape reconfigurations are further exploited as active acoustic wave regulators to tune bandgaps and wave propagations. The bilayer approach thus provides a new concept for the design of area‐preserving active metamaterials for broader applications.

     
    more » « less
  4. Abstract

    Magnetic nanoparticle chains offer the anisotropic magnetic properties that are often desirable for micro‐ and nanoscale systems; however, to date, large‐scale fabrication of these nanochains is limited by the need for an external magnetic field during the synthesis. In this work, the unique self‐assembly of nanoparticles into chains as a result of their intrinsic dipolar interactions only is examined. In particular, it is shown that in a high concentration reaction regime, the dipole–dipole coupling between two neighboring magnetic iron cobalt (FeCo) nanocubes, was significantly strengthened due to small separation between particles and their high magnetic moments. This dipole–dipole interaction enables the independent alignment and synthesis of magnetic FeCo nanochains without the assistance of any templates, surfactants, or even external magnetic field. Furthermore, the precursor concentration ([M] = 0.016, 0.021, 0.032, 0.048, 0.064, and 0.096m) that dictates the degree of dipole interaction is examined—a property dependent on particle size and inter‐particle distance. By varying the spinner speed, it is demonstrated that the balance between magnetic dipole coupling and fluid dynamics can be used to understand the self‐assembly process and control the final structural topology from that of dimers to linear chains (with aspect ratio >10:1) and even to branched networks. Simulations unveil the magnetic and fluid force landscapes that determine the individual nanoparticle interactions and provide a general insight into predicting the resulting nanochain morphology. This work uncovers the enormous potential of an intrinsic magnetic dipole‐induced assembly, which is expected to open new doors for efficient fabrication of 1D magnetic materials, and the potential for more complex assemblies with further studies.

     
    more » « less
  5. BACKGROUND Landau’s Fermi liquid theory provides the bedrock on which our understanding of metals has developed over the past 65 years. Its basic premise is that the electrons transporting a current can be treated as “quasiparticles”—electron-like particles whose effective mass has been modified, typically through interactions with the atomic lattice and/or other electrons. For a long time, it seemed as though Landau’s theory could account for all the many-body interactions that exist inside a metal, even in the so-called heavy fermion systems whose quasiparticle mass can be up to three orders of magnitude heavier than the electron’s mass. Fermi liquid theory also lay the foundation for the first successful microscopic theory of superconductivity. In the past few decades, a number of new metallic systems have been discovered that violate this paradigm. The violation is most evident in the way that the electrical resistivity changes with temperature or magnetic field. In normal metals in which electrons are the charge carriers, the resistivity increases with increasing temperature but saturates, both at low temperatures (because the quantized lattice vibrations are frozen out) and at high temperatures (because the electron mean free path dips below the smallest scattering pathway defined by the lattice spacing). In “strange metals,” by contrast, no saturation occurs, implying that the quasiparticle description breaks down and electrons are no longer the primary charge carriers. When the particle picture breaks down, no local entity carries the current. ADVANCES A new classification of metallicity is not a purely academic exercise, however, as strange metals tend to be the high-temperature phase of some of the best superconductors available. Understanding high-temperature superconductivity stands as a grand challenge because its resolution is fundamentally rooted in the physics of strong interactions, a regime where electrons no longer move independently. Precisely what new emergent phenomena one obtains from the interactions that drive the electron dynamics above the temperature where they superconduct is one of the most urgent problems in physics, attracting the attention of condensed matter physicists as well as string theorists. One thing is clear in this regime: The particle picture breaks down. As particles and locality are typically related, the strange metal raises the distinct possibility that its resolution must abandon the basic building blocks of quantum theory. We review the experimental and theoretical studies that have shaped our current understanding of the emergent strongly interacting physics realized in a host of strange metals, with a special focus on their poster-child: the copper oxide high-temperature superconductors. Experiments are highlighted that attempt to link the phenomenon of nonsaturating resistivity to parameter-free universal physics. A key experimental observation in such materials is that removing a single electron affects the spectrum at all energy scales, not just the low-energy sector as in a Fermi liquid. It is observations of this sort that reinforce the breakdown of the single-particle concept. On the theoretical side, the modern accounts that borrow from the conjecture that strongly interacting physics is really about gravity are discussed extensively, as they have been the most successful thus far in describing the range of physics displayed by strange metals. The foray into gravity models is not just a pipe dream because in such constructions, no particle interpretation is given to the charge density. As the breakdown of the independent-particle picture is central to the strange metal, the gravity constructions are a natural tool to make progress on this problem. Possible experimental tests of this conjecture are also outlined. OUTLOOK As more strange metals emerge and their physical properties come under the scrutiny of the vast array of experimental probes now at our disposal, their mysteries will be revealed and their commonalities and differences cataloged. In so doing, we should be able to understand the universality of strange metal physics. At the same time, the anomalous nature of their superconducting state will become apparent, offering us hope that a new paradigm of pairing of non-quasiparticles will also be formalized. The correlation between the strength of the linear-in-temperature resistivity in cuprate strange metals and their corresponding superfluid density, as revealed here, certainly hints at a fundamental link between the nature of strange metallicity and superconductivity in the cuprates. And as the gravity-inspired theories mature and overcome the challenge of projecting their powerful mathematical machinery onto the appropriate crystallographic lattice, so too will we hope to build with confidence a complete theory of strange metals as they emerge from the horizon of a black hole. Curved spacetime with a black hole in its interior and the strange metal arising on the boundary. This picture is based on the string theory gauge-gravity duality conjecture by J. Maldacena, which states that some strongly interacting quantum mechanical systems can be studied by replacing them with classical gravity in a spacetime in one higher dimension. The conjecture was made possible by thinking about some of the fundamental components of string theory, namely D-branes (the horseshoe-shaped object terminating on a flat surface in the interior of the spacetime). A key surprise of this conjecture is that aspects of condensed matter systems in which the electrons interact strongly—such as strange metals—can be studied using gravity. 
    more » « less