skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced Magnetic Anisotropy for Reprogrammable High‐Force‐Density Microactuators
Abstract The precise control of magnetic properties at the microscale has transformative potential in healthcare and human‐robot interaction. This research focuses on understanding the magnetic interactions in nanostructure assemblies responsible for microactuation. By combining experimental measurements and micromagnetic simulations, the interactions in both nanocube and nanochain assemblies are elucidated. Hysteresis measurements and first‐order reversal curves (FORC) reveal that the spatial arrangement of these assemblies governs their collective magnetism. A critical concentration threshold is observed where a transition from ferromagnetic‐like to antiferromagnetic‐like coupling occurs. Leveraging the high uniaxial anisotropy of 1D nanochains, the remanent magnetization of assembled chain structures is maximized for efficient magneto‐mechanical energy transduction. By utilizing an optimized magnetic nanostructure concentration, a flexible film is fabricated, and its significantly enhanced mechanical deformation response to a small magnetic field, surpassing conventional particle‐based samples by a factor of five, is demonstrated. Demonstrating excellent transduction efficiency, visible deformations such as bending and S‐shaped twisting modes are achieved with an applied field of less than 400 Oe. Furthermore, the reprogrammability of the actuator, achieving a U‐shaped bending mode by altering its magnetization profile, is showcased. This research provides valuable insights for designing reconfigurable and effective microactuators and devices at significantly smaller scales than previously possible.  more » « less
Award ID(s):
1719875
PAR ID:
10466038
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
2
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effects of magnetostatic coupling on switching dynamics are investigated for assemblies of patterned disc-shaped magnetic elements using mumax3 micromagnetic simulations. The arrangements of coupled dots were designed using information about the switching fields and reversal dynamics of isolated dots, as well as the magnitude of the magnetic stray fields they generate. The magnetization dynamics for individual dots was examined during a reversal cascade down a linear chain of dots. The magnetization angle fluctuated much more when neighboring dots have opposite magnetization directions, consistent with a lower energy barrier for reversal. The data were analyzed to differentiate thermal and interaction field effects. While many systems of interacting nanomagnets have been analyzed in terms of empirical models, the dynamical energy barrier approach offers a methodology with a more detailed and physically intuitive way to study both simple systems like the chain and more complex assemblies such as artificial spin ice. 
    more » « less
  2. Abstract Elastic filaments driven out of equilibrium display complex phenomena that involve periodic changes in their shape. Here, the periodic deformation dynamics of semiflexible colloidal chains in an eccentric magnetic field are presented. This field changes both its magnitude and direction with time, leading to novel nonequilibrium chain structures. Deformation into S-, Z-, and 4-mode shapes arises via the propagation and growth of bending waves. Transitions between these morphologies are governed by an interplay among magnetic, viscous, and elastic forces. Furthermore, the periodic behavior leading to these structures is described by four distinct stages of motion that include rotation, arrest, bending, and stretching of the chain. These stages correspond to specific intervals of the eccentric field’s period. A scaling analysis that considers the relative ratio of viscous to magnetic torques via a critical frequency illustrates how to maximize the bending energy. These results provide new insights into controlling colloidal assemblies by applying complex magnetic fields. 
    more » « less
  3. We report results of magnetization and 19F NMR measurements in the normal state of as-grown vacuum-annealed LaO0.5⁢F0.5⁡BiS2. The magnetization is dominated by a temperature-independent diamagnetic component and a field- and temperature-dependent paramagnetic contribution 𝑀𝜇⁡(𝐻,𝑇) from a ∼1000 ppm concentration of local moments, an order of magnitude higher than can be accounted for by measured rare-earth impurity concentrations. 𝑀𝜇⁡(𝐻,𝑇) can be fit by the Brillouin function 𝐵𝐽⁡(𝑥) or, perhaps more realistically, a two-level tanh⁡(𝑥) model for magnetic Bi 6⁢𝑝 ions in defect crystal fields. Both fits require a phenomenological Curie-Weiss argument 𝑥=𝜇eff⁢𝐻⁡/(𝑇+𝑇𝑊), 𝑇𝑊≈1.7 K. There is no evidence for magnetic order down to 2 K, and the origin of 𝑇𝑊 is not clear. 19F frequency shifts, linewidths, and spin-lattice relaxation rates are consistent with purely dipolar 19F/defect-spin interactions. The defect-spin correlation time 𝜏𝑐⁡(𝑇) obtained from 19F spin-lattice relaxation rates obeys the Korringa relation 𝜏𝑐⁢𝑇=const, indicating the relaxation is dominated by conduction-band fluctuations. 
    more » « less
  4. Recent works have shown that strongly magnetized plasmas characterized by having a gyrofrequency greater than the plasma frequency exhibit novel transport properties. One example is that the friction force on a test charge shifts, obtaining components perpendicular to its velocity in addition to the typical stopping power component antiparallel to its velocity. Here, we apply a recent generalization of the Boltzmann equation for strongly magnetized plasmas to calculate the ion–electron temperature relaxation rate. Strong magnetization is generally found to increase the temperature relaxation rate perpendicular to the magnetic field and to cause the temperatures parallel and perpendicular to the magnetic field to not relax at equal rates. This, in turn, causes a temperature anisotropy to develop during the equilibration. Strong magnetization also breaks the symmetry of independence of the sign of the charges of the interacting particles on the collision rate, commonly known as the “Barkas effect.” It is found that the combination of oppositely charged interaction and strong magnetization causes the ion–electron parallel temperature relaxation rate to be significantly suppressed, scaling inversely proportional to the magnetic field strength. 
    more » « less
  5. A dilute magnetic emulsion under the combined action of a uniform external magnetic field and a small amplitude oscillatory shear is studied using numerical simulations. We consider a three-dimensional domain with a single ferrofluid droplet suspended in a non-magnetizable Newtonian fluid. We present results of droplet shape and orientation, viscoelastic functions and bulk emulsion magnetization as functions of the shear oscillation frequency, magnetic field intensity and orientation. We also investigate how the magnetic field induces mechanical anisotropy by producing internal torques in oscillatory conditions. We found that, when the magnetic field is parallel to the shear plane, the droplet shape is mostly independent of the shear oscillation frequency. Regarding the viscometric functions, we show how the external magnetic field modifies the storage and loss moduli, especially for a field aligned to the main velocity gradient. The bulk emulsion magnetization is studied in the same fashion as the viscoelastic functions of the oscillatory shear. We show that the in-phase component of the magnetization with respect to the shear rate reaches a saturation magnetization, at the high frequencies limit, dependent on the magnetic field intensity and orientation. On the other hand, we found a non-zero out-of-phase response, which indicates a finite emulsion magnetization relaxation time. Our results indicate that the magnetization relaxation is closely related to the mechanical relaxation for dilute magnetic emulsions under oscillatory shear. 
    more » « less