Nanoscale single-domain bar magnets are building blocks for a variety of fundamental and applied mesoscopic magnetic systems, such as artificial spin ices, magnetic shape-morphing microbots, and magnetic majority logic gates. The magnetization reversal switching field of the bar nanomagnets is a crucial parameter that determines the physical properties and functionalities of their constituted artificial systems. Previous methods on tuning the magnetization reversal switching field of a bar nanomagnet usually relied on modifying its aspect ratio, such as its length, width, and/or thickness. Here, we show that the switching field of a bar nanomagnet saturates when extending its length beyond a certain value, preventing further tailoring of the magnetization reversal via aspect ratios. We showcase a highly tunable switching field of a bar nanomagnet by tailoring its end geometry without altering its size. This provides an easy method to control the magnetization reversal of a single-domain bar nanomagnet. It would enable new research and/or applications, such as designing artificial spin ices with additional tuning parameters, engineering magnetic microbots with more flexibility, and developing magnetic quantum-dot cellular automata systems for low power computing.
more »
« less
Magnetostatic Coupling Effects on Reversal Dynamics
The effects of magnetostatic coupling on switching dynamics are investigated for assemblies of patterned disc-shaped magnetic elements using mumax3 micromagnetic simulations. The arrangements of coupled dots were designed using information about the switching fields and reversal dynamics of isolated dots, as well as the magnitude of the magnetic stray fields they generate. The magnetization dynamics for individual dots was examined during a reversal cascade down a linear chain of dots. The magnetization angle fluctuated much more when neighboring dots have opposite magnetization directions, consistent with a lower energy barrier for reversal. The data were analyzed to differentiate thermal and interaction field effects. While many systems of interacting nanomagnets have been analyzed in terms of empirical models, the dynamical energy barrier approach offers a methodology with a more detailed and physically intuitive way to study both simple systems like the chain and more complex assemblies such as artificial spin ice.
more »
« less
- Award ID(s):
- 2004559
- PAR ID:
- 10323421
- Date Published:
- Journal Name:
- Journal of physics
- Volume:
- 55
- ISSN:
- 0368-3400
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the observation of current induced spin–orbit torque (SOT) switching of magnetization in a (Ga,Mn)(As,P) film using perpendicular magnetic anisotropy. Complete SOT switching of magnetization was achieved with current densities as low as 7.4 × 105 A/cm2, which is one to two orders of magnitude smaller than that normally used for SOT switching in ferromagnet/heavy metal bilayer systems. The observed magnetization switching chirality during current scans is consistent with SOT arising from spin polarization caused by the Dresselhaus-type spin–orbit-induced (SOI) fields. The magnitudes of effective SOI fields corresponding to the SOT were obtained from shifts of switching angles in angular dependent Hall measurements observed for opposite current polarities. By measuring effective SOI fields for the [11̄0] and the [110] current directions, we were then able to separate the values of the Dresselhaus-type (HeffD) and Rashba (HeffR) SOI fields. At a current density of 6.0 × 105 A/cm2, these values are HeffD=6.73Oe and HeffR=1.31Oe, respectively. The observed ratio of about 5:1 between Dresselhaus-type and Rashba SOI fields is similar to that observed in a GaMnAs film with an in-plane magnetic anisotropy.more » « less
-
Switching of magnetization by spin–orbit torque in the (Ga,Mn)(As,P) film was studied with currents along ⟨100⟩ crystal directions and an in-plane magnetic field bias. This geometry allowed us to identify the presence of two independent spin–orbit-induced magnetic fields: the Rashba field and the Dresselhaus field. Specifically, we observe that when the in-plane bias field is along the current (I[Formula: see text]H bias ), switching is dominated by the Rashba field, while the Dresselhaus field dominates magnetization reversal when the bias field is perpendicular to the current (I ⊥ H bias ). In our experiments, the magnitudes of the Rashba and Dresselhaus fields were determined to be 2.0 and 7.5 Oe, respectively, at a current density of 8.0 × 10 5 A/cm 2 .more » « less
-
Abstract The precise control of magnetic properties at the microscale has transformative potential in healthcare and human‐robot interaction. This research focuses on understanding the magnetic interactions in nanostructure assemblies responsible for microactuation. By combining experimental measurements and micromagnetic simulations, the interactions in both nanocube and nanochain assemblies are elucidated. Hysteresis measurements and first‐order reversal curves (FORC) reveal that the spatial arrangement of these assemblies governs their collective magnetism. A critical concentration threshold is observed where a transition from ferromagnetic‐like to antiferromagnetic‐like coupling occurs. Leveraging the high uniaxial anisotropy of 1D nanochains, the remanent magnetization of assembled chain structures is maximized for efficient magneto‐mechanical energy transduction. By utilizing an optimized magnetic nanostructure concentration, a flexible film is fabricated, and its significantly enhanced mechanical deformation response to a small magnetic field, surpassing conventional particle‐based samples by a factor of five, is demonstrated. Demonstrating excellent transduction efficiency, visible deformations such as bending and S‐shaped twisting modes are achieved with an applied field of less than 400 Oe. Furthermore, the reprogrammability of the actuator, achieving a U‐shaped bending mode by altering its magnetization profile, is showcased. This research provides valuable insights for designing reconfigurable and effective microactuators and devices at significantly smaller scales than previously possible.more » « less
-
Developing permanent magnets with fewer critical elements requires understanding hysteresis effects and coercivity through visualizing magnetization reversal. Here, we numerically investigate the effect of the geometry of nanoscale ferromagnetic inclusions in a paramagnetic/nonmagnetic matrix to understand the key factors that maximize the magnetic energy product of such nanocomposite systems. Specifically, we have considered a matrix of “3 μm × 3 μm × 40 nm” dimension, which is a sufficiently large volume, two-dimensional representation considering that the ferromagnetic inclusions' thickness is less than 3.33% of the lateral dimensions simulated. Using this approach, which minimizes edge effects to approximate bulk-like magnetic behavior while remaining computationally tractable for simulation, we systematically studied the effect of the thickness of ferromagnetic strips, separation between the ferromagnetic strips due to the nonmagnetic matrix material, different saturation magnetization values, and the length of these ferromagnetic strips on magnetic coercivity and remanence by simulating the hysteresis loop plots for each geometry. Furthermore, we study the underlying micromagnetic mechanism for magnetic reversal to understand the factors that could help attain the maximum magnetic energy densities for ferromagnetic nanocomposite systems in a paramagnetic/nonmagnetic material matrix. In this study, we have used material parameters of an exemplary Alnico alloy system, a rare-earth-free, thermally stable nanocomposite, which could potentially replace high-strength NdFeB magnets in applications that do not require large energy products. However, we project the energy density (BH)max of materials with higher saturation magnetization to have an ideal theoretical limit of (BH)max ∼94 kJ/m3 (∼12 MGOe), which is ∼(35%–40%) of the energy density of Rare-Earth Free Magnets. This energy density could be higher if exchange bias from antiferromagnets, defects, and pinning is included and could stimulate further experimental work on the fabrication and large-scale manufacturing of RE-free PMs with different nanocomposite systems.more » « less
An official website of the United States government

