Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent decades, the construction industry has undergone a technological shift incorporating innovative technologies, such as robotics. However, information requirements must be met to integrate robotics further. Currently, building information models (BIM) contain substantial project information that can be leveraged for robots to create construction tasks, but for some building systems, the level of development (LOD) is inadequate to support these new requirements. Therefore, this study proposes a framework to increase the LOD of building systems by considering location information (X, Y, Z), orientation, material type, and component I.D. The computational modeler, Dynamo, is leveraged to increase the model’s LOD, extract information, and facilitate robotic task execution in the future. A case study is presented for multiple masonry room configurations developed in Autodesk Revit, where masonry units are generated and placed into design locations based on the geometry of the wall system. The case study used concrete masonry units (CMU) and standard brick. The number of partial-sized and full-sized blocks for each configuration was recorded, along with the computational time required to generate the units. It was observed that room configurations with more openings had longer computational times when compared to rooms constructed from the same material. After running the script, the model is reviewed to ensure accuracy and prevent overlaps or gaps in the model. The workflow provides insight into the methods used to interpret model geometry and extract information.more » « lessFree, publicly-accessible full text available June 1, 2025
-
Development of a parametric modeling method for masonry wall systems to support robotic constructionTurkan, Y. and (Ed.)The construction industry has undergone a technological shift. Technology advancements have made robots a topic of discussion in construction. One challenge to overcome is how the robot receives information from designed BIM models. This study describes the methods employed for parametric modeling and generating model content of wall systems in Autodesk Revit added with a Dynamo script. Coordinates are determined for components based on model geometry and dimensions. Once generated, components are placed with the required material based on wall parameters. This research develops a method to add components based on wall materials from a traditionally modeled BIM extracting information such as location, object identifier (ID), type, and orientation which is formatted to transfer to the robot based on the needs of the robotic system as a list of tasks in a comma-separated values (.CSV) file. This study details the development process and early implementation of the Dynamo script.more » « less
-
Turkan, Y. and (Ed.)Advances in construction robotics represent a potential shift in building design and construction. In general, construction robotics are usually deployed directly onto construction sites without systematically evaluating the design constructability for robotic applications. Literature on constructability suggest that ignoring it during design will cause rework, inefficiency, and higher cost. Although previous studies have widely discussed design constructability, they mainly focus on traditional human craft-based construction methods. Whereas a gap still exists in design constructability assessment for construction robotics. This paper presents an initial analytical framework for constructability assessment for construction robotics during the design phase. Specifically, we summarize factors that impact robotic constructability based on robotic features, design features, work constraints, and piloted an automated constructability checking system for robotics. Additionally, this study takes CANVAS, a drywall finishing robot, as case study to create a framework in simulation environment and the results demonstrate the potential value of the proposed framework.more » « less
-
Turkan, Y. and (Ed.)This study gathered data into a construction robot schema (CRS) with an initial data structure that can be used to collect and exchange various construction robots’ information based on the data requirements of construction planners for robotics operations. To develop the CRS, the study conducted a systematic literature review using the Web of Science database to filter and identify relevant papers which were published from 2018 to 2022. Based on 279 eligible papers, the study identified significant information which involved data requirements of the construction domain on robotics using Nvivo software. To structure the information, the study summarized the information into parameters then categorized, defined, matched data types, and exemplified for these parameters. All the parameters were grouped into four categories, including ontological properties, operational requirements, activity, and safety. As a result, CRS supports data structure including 4 categories and 35 parameters with corresponding definitions, data types, examples, and references.more » « less
-
Desjardin, S. and (Ed.)Building Information Modeling (BIM) is a critical data source for constructing new structures depicting the inner workings of the systems and components in detail. However, current modeling practices are based on traditional construction methods, resulting in insufficient details within the BIM model to support robotic construction for many building systems. The model’s level of development (LOD) needs to be increased to facilitate the changes in data requirements. One method that allows for increased LOD is computational modeling; however, many factors can influence the process. Therefore, this study investigates challenges for implementation to increase the LOD for building to enable robotic construction. Dynamo is used as the computational modeling software in conjunction with Autodesk Revit to accomplish this. A process was created to place various components, such as concrete masonry units (CMUs), in their final design location and extract information utilizing these platforms for masonry construction. However, challenges were met during this process, including material naming conventions, tolerance/specification inputs, wall openings/lintels, and component/material libraries. The challenges presented during the implementation of the Dynamo mirror what the literature shows for supporting technological infrastructure BIM and mobile robot construction. To accomplish this research, an extensive literature review was completed, along with documentation of challenges during the development and implementation of the script.more » « less
-
Desjardin, S. and (Ed.)The development of robotics in the Architecture, Engineering, and Construction (AEC) industry has emerged in recent years in response to technology advances and industry challenges such as workforce shortages. Construction robotics has the potential to increase construction productivity and accuracy as well as reduce accidents and costs. However, their introduction to construction sites creates new challenges. Previous studies have shown that robots can cause major changes in construction workflow, scope, and methods. Construction robotics introduce key changes to the work process and the sequence of construction tasks. The traditional planning approach for work break down structure and scheduling assigns resources for construction activities based on human labor and craft methods. Despite this, the capabilities of robotics relative to construction resource planning, sequencing, and work scope has not been fully studied. To address this, the implementation of robotics in construction projects needs a new approach to organizing work packages (WP). With the inclusion of robotics as a resource, planning parameters such as methods and sequence will change both the scope and accordingly the work packaging for construction. This paper aims to systematically identify the potential impacts of robots on construction processes, as well as how those changes influences work packaging. The methodology is based on data integration and content analysis from literature review and collected interviews with project participants about real-world construction projects. The paper discusses how construction robots impact the work package approach and categorizes the affected factors. These factors include the work area, sequence and priority of construction activities, safety management, allocation of risk responsibility for tasks, interaction with other trades, and required materials.more » « less
-
In the past, the construction industry has been slow to adopt new technology. There has been a rapid expansion of technologies, often referred to as Industry 4.0, to aid in the use of automation. One challenge paralleling these new technologies is implementing how a robot interprets design information, specifically information from a Building Information Model (BIM). This paper presents a method for identifying and transforming information from BIM to support robotic material placement on the construction site. This research will include a review of what information can be directly extracted from the model and what must be supplemented to the model for the robot to perform defined tasks within a construction site. The construction sites’ dynamic nature poses multiple challenges that must be addressed for the information extracted from a model to be used by a robot in daily construction operations. This research also identifies barriers and limitations based upon current practice, such as different levels of development or model content as well as needed precision within the information provided for a mobile robot to complete a defined task.more » « less
-
Robotics and automation are still considered a novelty in the U.S. construction industry, as compared to manufacturing, despite its proven advantages for production. Due to the continuing advancement of technology needed, there are limited applications of robotics in construction to date. To better identify the potential tasks that would benefit from the use of robotics on construction sites, we consider methods for assessing the craft labor tasks that occur in construction. In this paper, we decompose construction tasks of an observed activity of installation of stone veneer system and compared two systems of categorizing the construction tasks based on value added assessment and lean (waste) assessment of tasks. The analysis compares the two categorization systems using a matrix which highlights consistency in the alignment of value adding tasks, such as final placement, as well as ineffective tasks with type two muda, but discrepancies emerge regarding the idea of contributory tasks related to logistical support of construction activities. The focus of the discussion is derived from the intersection of contributory tasks with type one muda tasks. The contributory tasks offer an opportunity to reduce the use of craft labor for wasteful tasks elimination by leveraging automation and robotics.more » « less
-
One of the many ways in which automation may help the construction industry is on-site material management. This paper presents an automated process where materials are selected for staging by detecting construction progress from site images. The materials are then delivered to their respective workface locations by a robot. The effectiveness of the material selection process is assessed using a simulated and physical construction site. We demonstrate that our process is successful under a number of different conditions and environments. Our system contributes to the feasibility of autonomously managing materials on a construction site and reveals potential avenues for future research.more » « less
-
The adoption of robotics into the construction industry has been much slower than in manufacturing and industrial sectors. Current shortfalls in skilled labor, productivity trends, and ongoing safety challenges point to the need for a drastic shift toward the adoption of robotics as a component of a shift toward industrialized construction. Despite this lag, the interest and development of robotic technology targeting construction has grown in recent years, ranging from the use of drones for tracking to use in offsite fabrication. However, the integration into fundamental site construction requires reconsideration of the information technology infrastructure needed to support detailed task execution information needs in the transition from craft labor to robotic operations. This research presents the identification and mapping of the IT System Architecture required to support BIM to Robotic Construction. Combining elements of the Building Information Modeling architecture and information exchanges with the needed construction task decomposition is required. These elements are mapped to the robotic system elements required for mobile robotic operations. In addition to defining the functions and integration required to support the BIM to Robotic Construction Workflow, shortcomings in existing infrastructure, notably regarding the ability to decompose construction fabrication and assembly means and methods are defined.more » « less