skip to main content


This content will become publicly available on June 28, 2024

Title: A Schema for robotics operations in construction
This study gathered data into a construction robot schema (CRS) with an initial data structure that can be used to collect and exchange various construction robots’ information based on the data requirements of construction planners for robotics operations. To develop the CRS, the study conducted a systematic literature review using the Web of Science database to filter and identify relevant papers which were published from 2018 to 2022. Based on 279 eligible papers, the study identified significant information which involved data requirements of the construction domain on robotics using Nvivo software. To structure the information, the study summarized the information into parameters then categorized, defined, matched data types, and exemplified for these parameters. All the parameters were grouped into four categories, including ontological properties, operational requirements, activity, and safety. As a result, CRS supports data structure including 4 categories and 35 parameters with corresponding definitions, data types, examples, and references.  more » « less
Award ID(s):
1928626
NSF-PAR ID:
10466065
Author(s) / Creator(s):
Editor(s):
Turkan, Y. and
Date Published:
Journal Name:
ASCE International Conference on Computing in Civil Engineering
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The validity and reliability of diagnoses in psychiatry is a challenging topic in mental health. The current mental health categorization is based primarily on symptoms and clinical course and is not biologically validated. Among multiple ongoing efforts, neurological observations alongside clinical evaluations are considered to be potential solutions to address diagnostic problems. The Bipolar‐Schizophrenia Network on Intermediate Phenotypes (B‐SNIP) has published multiple papers attempting to reclassify psychotic illnesses based on biological rather than symptomatic measures. However, the effort to investigate the relationship between this new categorization approach and other neuroimaging techniques, including resting‐state fMRI data, is still limited. This study focused on investigating the relationship between different psychotic disorders categorization methods and resting‐state fMRI‐based measures called dynamic functional network connectivity (dFNC) using state‐of‐the‐art artificial intelligence (AI) approaches. We applied our method to 613 subjects, including individuals with psychosis and healthy controls, which were classified using both the Diagnostic and Statistical Manual of Mental Disorders (DSM‐IV) and the B‐SNIP biomarker‐based (Biotype) approach. Statistical group differences and cross‐validated classifiers were performed within each framework to assess how different categories. Results highlight interesting differences in occupancy in both DSM‐IV and Biotype categorizations compared to healthy individuals, which are distributed across specific transient connectivity states. Biotypes tended to show less distinctiveness in occupancy level and included fewer cellwise differences. Classification accuracy obtained by DSM‐IV and Biotype categories were both well above chance. Results provided new insights and highlighted the benefits of both DSM‐IV and biology‐based categories while also emphasizing the importance of future work in this direction, including employing further data types.

     
    more » « less
  2. We novelly applied established ecology methods to quantify and compare language diversity within a corpus of short written student texts. Constructed responses (CRs) are a common form of assessment but are difficult to evaluate using traditional methods of lexical diversity due to text length restrictions. Herein, we examined the utility of ecological diversity measures and ordination techniques to quantify differences in short texts by applying these methods in parallel to traditional text analysis methods to a corpus of previously studied college student CRs. The CRs were collected at two time points (Timing), from three types of higher-ed institutions (Type), and across three levels of student understanding (Thinking). Using previous work, we were able to predict that we would observe the most difference based on Thinking, then Timing and did not expect differences based on Type allowing us to test the utility of these methods for categorical examination of the corpus. We found that the ecological diversity metrics that compare CRs to each other (Whittaker’s beta, species turnover, and Bray–Curtis Dissimilarity) were informative and correlated well with our predicted differences among categories and other text analysis methods. Other ecological measures, including Shannon’s and Simpson’s diversity, measure the diversity of language within a single CR. Additionally, ordination provided meaningful visual representations of the corpus by reducing complex word frequency matrices to two-dimensional graphs. Using the ordination graphs, we were able to observe patterns in the CR corpus that further supported our predictions for the data set. This work establishes novel approaches to measuring language diversity within short texts that can be used to examine differences in student language and possible associations with categorical data. 
    more » « less
  3. null (Ed.)
    There is a significant amount of synergy between virtual reality (VR) and the field of robotics. However, it has only been in approximately the past five years that commercial immersive VR devices have been available to developers. This new availability has led to a rapid increase in research using VR devices in the field of robotics, especially in the development of VR interfaces for operating robots. In this paper, we present a systematic review on VR interfaces for robot operation that utilize commercially available immersive VR devices. A total of 41 papers published between 2016–2020 were collected for review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Papers are discussed and categorized into five categories: (1) Visualization, which focuses on displaying data or information to operators; (2) Robot Control and Planning, which focuses on connecting human input or movement to robot movement; (3) Interaction, which focuses on the development of new interaction techniques and/or identifying best interaction practices; (4) Usability, which focuses on user experiences of VR interfaces; and (5) Infrastructure, which focuses on system architectures or software to support connecting VR and robots for interface development. Additionally, we provide future directions to continue development in VR interfaces for operating robots. 
    more » « less
  4. With the advancement of automation and robotic technologies, the teleoperation has been leveraged as a promising solution for human workers in a hazardous construction work environment. Since human operators and construction sites are separated in a distance, teleoperation requires a seamless human-machine interface, an intermediate medium, to communicate between humans and machines in construction sites. Several types of teleoperation interfaces including conventional joysticks, haptic devices, graphic user interfaces, auditory interfaces, and tactile interfaces have been developed to control and command construction robotics remotely. The ultimate goal of human-machine interfaces for remote operations is to make intuitive sensory channels that can provide and receive enough information while reducing the associated cognitive and physical load on human operators. Previously developed interfaces have tried to achieve such goals, but each interface still has challenges that should be assessed for enhancing the future teleoperation application in construction workplaces. This paper examines different human-machine interfaces for excavator teleoperation in terms of its on-site usability and intuitiveness. The capabilities of the interfaces for excavator teleoperation are evaluated based on their limitations and requirements. The outcome is expected to provide better understanding of teleoperation interfaces for excavators and guiding future directions for addressing underlying challenges. 
    more » « less
  5. Robotics has emerged as one of the most popular subjects in STEM (Science, Technology, Engineering, and Mathematics) education for students in elementary, middle, and high schools, providing them with an opportunity to gain knowledge of engineering and technology. In recent years, flying robots (or drones) have also gained popularity as teaching tool to impart the fundamentals of computer programming to high school students. However, despite completing the programming course, students may still lack an understanding of the working principle of drones. This paper proposes an approach to teach students the basic principles of drone aeronautics through laboratory programming. This course was designed by professors from Vaughn College of Aeronautics and Technology for high school students who work on after-school and weekend programs during the school year or summer. In early 2021, the college applied for and was approved to offer a certificate program in UAS (Unmanned Aerial Systems) Designs, Applications, and Operations to college students by the Education Department of New York State. Later that year, the college also received a grant from the Federal Aviation Administration (FAA) to provide tuition-free early higher education for high school students, allowing them to complete the majority of the credits in the UAS certificate program while still enrolled in high school. The program aims to equip students with the hands-on skills necessary for successful careers as versatile engineers and technicians. Most of the courses in the certificate program are introductory or application-oriented, such as Introduction to Drones, Drone Law, Part 107 License, or Fundamentals of Land Surveying and Photogrammetry. However, one of the courses, Introduction to Drone Aeronautics, is more focused on the theory of drone flight and control. Organizing the lectures and laboratory of the course for high school students who are interested in pursuing the certificate can be a challenge. To create the Introduction to Drone Aeronautics course, a variety of school courses and online resources were examined. After careful consideration, the Robolink Co-drone [1] was chosen as the experimental platform for students to study drone flight, and control and stabilize a drone. However, developing a set of comprehensible lectures proved to be a difficult task. Based on the requirements of the certificate program, the lectures were designed to cover the following topics: (a) an overview of fundamentals of drone flight principles, including the forces acting on a drone such as lift, weight, drag, and thrust, as well as the selection of on-board components and trade-offs for proper payload and force balance; (b) an introduction to the proportional-integral-directive (PID) controller and its role in stabilizing a drone and reducing steady-state errors; (c) an explanation of the forces acting on a drone in different coordinates, along with coordinate transformations; and (d) an opportunity for students to examine the dynamic model of a 3D quadcopter with control parameters, but do not require them to derive the 3D drone dynamic equations. In the future, the course can be improved to cater to the diverse learning needs of the students. More interactive and accessible tools can be developed to help different types of students understand drone aeronautics. For instance, some students may prefer to apply mathematical skills to derive results, while others may find it easier to comprehend the stable flight of a drone by visualizing the continuous changes in forces and balances resulting from the control of DC motor speeds. Despite the differences in students’ mathematical abilities, the course has helped high school students appreciate that mathematics is a powerful tool for solving complex problems in the real world, rather than just a subject of abstract numbers. 
    more » « less