skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Validation of a Construction Robotics Schema for Site Operation Planning
This paper presents a construction robot schema (CRS) for construction planners to facilitate decision-making and project planning in operating robotics. CRS is a database schema structure that was developed in our previous study, which can facilitate collecting and exchanging data of various construction robots based on the data requirements of the construction domain. We validated the applicability of the schema by the simulation of robotic construction operations. In addition, we conducted interviews with experts from the construction industry to validate the information in CRS. As a result, the schema was validated with minor revisions to some parameters. The characteristics of CRS compared to other types of robot schema are that its development and application are based on the perspective of the construction domain and are designed to cover different construction robots broadly. The conclusions highlight the contributions of the data schema use and applicability for the construction industry.  more » « less
Award ID(s):
1928626
PAR ID:
10565197
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society of Civil Engineers
Date Published:
ISBN:
9780784485262
Page Range / eLocation ID:
649 to 658
Format(s):
Medium: X
Location:
Des Moines, Iowa
Sponsoring Org:
National Science Foundation
More Like this
  1. Turkan, Y. and (Ed.)
    This study gathered data into a construction robot schema (CRS) with an initial data structure that can be used to collect and exchange various construction robots’ information based on the data requirements of construction planners for robotics operations. To develop the CRS, the study conducted a systematic literature review using the Web of Science database to filter and identify relevant papers which were published from 2018 to 2022. Based on 279 eligible papers, the study identified significant information which involved data requirements of the construction domain on robotics using Nvivo software. To structure the information, the study summarized the information into parameters then categorized, defined, matched data types, and exemplified for these parameters. All the parameters were grouped into four categories, including ontological properties, operational requirements, activity, and safety. As a result, CRS supports data structure including 4 categories and 35 parameters with corresponding definitions, data types, examples, and references. 
    more » « less
  2. Robots present an innovative solution to the construction industry’s challenges, including safety concerns, skilled worker shortages, and productivity issues. Successfully collaborating with robots requires new competencies to ensure safety, smooth interaction, and accelerated adoption of robotic technologies. However, limited research exists on the specific competencies needed for human—robot collaboration in construction. Moreover, the perspectives of construction industry professionals on these competencies remain underexplored. This study examines the perceptions of construction industry professionals regarding the knowledge, skills, and abilities necessary for the effective implementation of human—robot collaboration in construction. A two-round Delphi survey was conducted with expert panel members from the construction industry to assess their views on the competencies for human—robot collaboration. The results reveal that the most critical competencies include knowledge areas such as human—robot interface, construction robot applications, human—robot collaboration safety and standards, task planning and robot control system; skills such as task planning, safety management, technical expertise, human—robot interface, and communication; and abilities such as safety awareness, continuous learning, problemsolving, critical thinking, and spatial awareness. This study contributes to knowledge by identifying the most significant competencies for human—robot collaboration in construction and highlighting their relative importance. These competencies could inform the design of educational and training programs and facilitate the integration of robotic technologies in construction. The findings also provide a foundation for future research to further explore and enhance these competencies, ultimately supporting safer, more efficient, and more productive construction practices. 
    more » « less
  3. Work-related musculoskeletal disorders (WMSDs) are a leading cause of injury for workers who are performing physically demanding and repetitive construction tasks. With recent advances in robotics, wearable robots are introduced into the construction industry to mitigate the risk of WMSDs by correcting the workers’ postures and reducing the load exerted on their body joints. While wearable robots promise to reduce the muscular and physical demands on workers to perform tasks, there is a lack of understanding of the impact of wearable robots on worker ergonomics. This lack of understanding may lead to new ergonomic injuries for worker swearing exoskeletons. To bridge this gap, this study aims to assess the workers’ ergonomic risk when using a wearable robot (back-support exoskeleton) in one of the most common construction tasks, material handling. In this research, a vision-based pose estimation algorithm was developed to estimate the pose of the worker while wearing a back-support exoskeleton. As per the estimated pose, joint angles between connected body parts were calculated. Then, the worker’s ergonomic risk was assessed from the calculated angles based on the Rapid Entire Body Assessment (REBA) method. Results showed that using the back-support exoskeleton reduced workers’ ergonomic risk by 31.7% by correcting awkward postures of the trunk and knee during material handling tasks, compared to not using the back-support exoskeleton. The results are expected to facilitate the implementation of wearable robots in the construction industry. 
    more » « less
  4. Issa, R. (Ed.)
    The construction industry has traditionally been a labor-intensive industry. Typically, labor cost takes a significant portion of the total project cost. In spite of the good pay, there was a big gap recently between demand and supply in construction trades position. A survey shows that more than 80% of construction companies in the Midwest of US are facing workforce shortage and suffering in finding enough skilled trades people to hire. This workforce shortage is also nationwide or even worldwide in many places. Construction automation provides a potential solution to mitigate this problem by seeking to replace some of the demanding, repetitive, and/or dangerous construction operations with robotic automation. Currently, robots have been used in bricklaying or heavy-lifting operations in the industry, and other uses remain to be explored. In this paper, the authors proposed a feasibility breakdown structure (FBS)-based robotic system method that can be used to test the feasibility of performing target construction operations with specific robotic systems, including a top-down work breakdown structure and a bottom-up set of feasibility analysis components based on literature search and/or simulation. The proposed method was demonstrated in testing the use of a KUKA robot and a Fetch robot to perform rebar mesh construction. Results showed that the overall workflow is feasible, whereas certain limitations presented in path planning. In addition, a smooth and timely information flow from the Fetch robot sensor and computer vision-based control to the two robots for a coordinated path planning and cooperation is critical for such constructability. 
    more » « less
  5. Construction inspection and monitoring are key activities in construction projects. Automation of inspection tasks can address existing limitations and inefficiencies of the manual process to enable systematic and consistent construction inspection. However, there is a lack of an in-depth understanding of the process of construction inspection and monitoring and the tasks and sequences involved to provide the basis for task delegation in a human-technology partnership. The purpose of this research is to study the conventional process of inspection and monitoring of construction work currently implemented in construction projects and to develop an alternative process using a quadruped robot as an inspector assistant to overcome the limitations of the conventional process. This paper explores the use of quadruped robots for construction inspection and monitoring with an emphasis on a human-robot teaming approach. Technical development and testing of the robotic technology are not in the scope of this study. The results indicate how inspector assistant quadruped robots can enable a human-technology partnership in future construction inspection and monitoring tasks. The research was conducted through on-site experiments and observations of inspectors during construction inspection and monitoring followed by a semi-structured interview to develop a process map of the conventional construction inspection and monitoring process. The study also includes on-site robot training and experiments with the inspectors to develop an alternative process map to depict future construction inspection and monitoring work with the use of an inspector assistant quadruped robot. Both the conventional and alternative process maps were validated through interview surveys with industry experts against four criteria including, completeness, accuracy, generalizability, and comprehensibility. The findings suggest that the developed process maps reflect existing and future construction inspection and monitoring work. 
    more » « less