Many block-based programming environments have proven to be effective at engaging novices in learning programming. However, most offer only restricted access to the outside world, limiting learners to commands and computing resources built in to the environment. Some allow learners to drag and drop files, connect to sensors and robots locally or issue HTTP requests. But in a world where most of the applications in our daily lives are distributed (i.e., their functionality depends on communicating with other computers or accessing resources and data on the internet), the limited support for beginners to envision and create such distributed programs is a lost opportunity. We argue that it is feasible to create environments with simple yet powerful abstractions that open up distributed computing and other widely-used but advanced computing concepts including networking, the Internet of Things, and cybersecurity to novices. The paper presents the architecture of and design decisions behind NetsBlox, a programming environment that supports these ideas. We show how NetsBlox expands opportunities for learning considerably: NetsBlox projects can access a wealth of online data and web services, and they can communicate with other projects. Moreover, the tool infrastructure enables young learners to collaborate with each other during program construction, whether they share their physical location or study remotely. Importantly, providing access to the wider world will also help counter widespread student perceptions that block-based environments are mere toys, and show that they are capable of creating compelling applications. In this way, NetsBlox offers an illuminating example of how tools can be designed to democratize access to powerful ideas in computing.
more »
« less
A survey on molecular-scale learning systems with relevance to DNA computing
DNA computing has emerged as a promising alternative to achieve programmable behaviors in chemistry by repurposing the nucleic acid molecules into chemical hardware upon which synthetic chemical programs can be executed. These chemical programs are capable of simulating diverse behaviors, including boolean logic computation, oscillations, and nanorobotics. Chemical environments such as the cell are marked by uncertainty and are prone to random fluctuations. For this reason, potential DNA-based molecular devices that aim to be deployed into such environments should be capable of adapting to the stochasticity inherent in them. In keeping with this goal, a new subfield has emerged within DNA computing, focusing on developing approaches that embed learning and inference into chemical reaction systems. If realized in biochemical contexts, such molecular machines can engender novel applications in fields such as biotechnology, synthetic biology, and medicine. Therefore, it would be beneficial to review how different ideas were conceived, how the progress has been so far, and what the emerging ideas are in this nascent field of ‘molecular-scale learning’.
more »
« less
- Award ID(s):
- 2113941
- PAR ID:
- 10466123
- Date Published:
- Journal Name:
- Nanoscale
- Volume:
- 15
- Issue:
- 17
- ISSN:
- 2040-3364
- Page Range / eLocation ID:
- 7676 to 7694
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Imaging mass spectrometry (IMS) technologies are capable of mapping a wide array of biomolecules in diverse cellular and tissue environments. IMS has emerged as an essential tool for providing spatially targeted molecular information due to its high sensitivity, wide molecular coverage and chemical specificity. One of the major challenges for mapping the complex cellular milieu is the presence of many isomers and isobars present in these samples. This challenge is traditionally addressed using orthogonal LC-based analysis, though, common approaches such as chromatography and electrophoresis are not able to be performed at timescales that are compatible with most imaging applications. Ion mobility offers rapid, gas-phase separations that are readily integrated with IMS workflows in order to provide additional data dimensionality that can improve signal-to-noise, dynamic range, and specificity. Here, we highlight recent examples of ion mobility coupled to imaging mass spectrometry and highlight their importance to the field.more » « less
-
Artificially designed molecular systems with programmable behaviors have become a valuable tool in chemistry, biology, material science, and medicine. Although information processing in biological regulatory pathways is remarkably robust to error, it remains a challenge to design molecular systems that are similarly robust. With functionality determined entirely by secondary structure of DNA, strand displacement has emerged as a uniquely versatile building block for cell-free biochemical networks. Here, we experimentally investigate a design principle to reduce undesired triggering in the absence of input (leak), a side reaction that critically reduces sensitivity and disrupts the behavior of strand displacement cascades. Inspired by error correction methods exploiting redundancy in electrical engineering, we ensure a higher-energy penalty to leak via logical redundancy. Our design strategy is, in principle, capable of reducing leak to arbitrarily low levels, and we experimentally test two levels of leak reduction for a core “translator” component that converts a signal of one sequence into that of another. We show that the leak was not measurable in the high-redundancy scheme, even for concentrations that are up to 100 times larger than typical. Beyond a single translator, we constructed a fast and low-leak translator cascade of nine strand displacement steps and a logic OR gate circuit consisting of 10 translators, showing that our design principle can be used to effectively reduce leak in more complex chemical systems.more » « less
-
DNA is an incredibly dense storage medium for digital data. However, computing on the stored information is expensive and slow, requiring rounds of sequencing, in silico computation, and DNA synthesis. Prior work on accessing and modifying data using DNA hybridization or enzymatic reactions had limited computation capabilities. Inspired by the computational power of “DNA strand displacement,” we augment DNA storage with “in-memory” molecular computation using strand displacement reactions to algorithmically modify data in a parallel manner. We show programs for binary counting and Turing universal cellular automaton Rule 110, the latter of which is, in principle, capable of implementing any computer algorithm. Information is stored in the nicks of DNA, and a secondary sequence-level encoding allows high-throughput sequencing-based readout. We conducted multiple rounds of computation on 4-bit data registers, as well as random access of data (selective access and erasure). We demonstrate that large strand displacement cascades with 244 distinct strand exchanges (sequential and in parallel) can use naturally occurring DNA sequence from M13 bacteriophage without stringent sequence design, which has the potential to improve the scale of computation and decrease cost. Our work merges DNA storage and DNA computing, setting the foundation of entirely molecular algorithms for parallel manipulation of digital information preserved in DNA.<more » « less
-
Gresalfi, M. and (Ed.)The importance of integrating computational thinking (CT) into existing school structures, like core content domains, has emerged from efforts to improve computer science education in the U.S. In the past, computer science has often been treated as an elective or enrichment activity, which limits students’ exposure to foundational computing ideas, especially in underserved schools. However, given the ubiquity technology plays in our lives, it is imperative that all students have access to CT. Few studies have focused on how pre-service teachers (PSTs) learn about CT. Some researchers argue that CT integration into K-12 education belongs in teacher preparation programs and that teacher educators should develop courses aimed at supporting PSTs’ understanding of CT in the context of schools. This paper explores the ways in which PSTs begin to understand CT and how they work to integrate CT into their core subject areas.more » « less
An official website of the United States government

