skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Artificial Intelligence for Smart Transportation
There are more than 7,000 public transit agencies in the U.S. (and many more private agencies), and together, they are responsible for serving 60 billion passenger miles each year. A well-functioning transit system fosters the growth and expansion of businesses, distributes social and economic benefits, and links the capabilities of community members, thereby enhancing what they can accomplish as a society. Since affordable public transit services are the backbones of many communities, this work investigates ways in which Artificial Intelligence (AI) can improve efficiency and increase utilization from the perspective of transit agencies. This book chapter discusses the primary requirements, objectives, and challenges related to the design of AI-driven smart transportation systems. We focus on three major topics. First, we discuss data sources and data. Second, we provide an overview of how AI can aid decision-making with a focus on transportation. Lastly, we discuss computational problems in the transportation domain and AI approaches to these problems.  more » « less
Award ID(s):
1952011
PAR ID:
10466148
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Vorobeychik, Yevgeniy., and Mukhopadhyay, Ayan., (Eds.). (2023). Artificial Intelligence and Society. ACM Press Subjects: Artificial Intelligence (cs.AI) Cite as: arXiv:2308.07457 [cs.AI] (or arXiv:2308.07457v1 [cs.AI] for this version) https://doi.org/10.48550/arXiv.2308.07457 Focus to learn more
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Social media can be a significant tool for transportation and transit agencies providing passengers with real-time information on traffic events. Moreover, COVID-19 and other limitations have compelled the agencies to engage with travelers online to promote public knowledge about COVID-related issues. It is, therefore, important to understand the agencies’ communication patterns. In this original study, the Twitter communication patterns of different transportation actors—types of message, communication sufficiency, consistency, and coordination—were examined using a social media data-driven approach applying text mining techniques and dynamic network analysis. A total of 850,000 tweets from 395 different transportation and transit agencies, starting in 2018 and the periods before, during and after the pandemic, were studied. Transportation agencies (federal, state, and city) were found to be less active on Twitter and mostly discussed safety measures, project management, and so forth. By contrast, the transit agencies (local bus and light, heavy, and commuter rail) were more active on Twitter and shared information about crashes, schedule information, passenger services, and so forth. Moreover, transportation agencies shared minimal pandemic safety information than transit agencies. Dynamic network analysis reveals interaction patterns among different transportation actors that are poorly connected and coordinated among themselves and with different health agencies (e.g., Centers for Disease Control and Prevention [CDC] and the Federal Emergency Management Agency [FEMA]). The outcome of this study provides understanding to improve existing communication plans, critical information dissemination efficacy, and the coordination of different transportation actors in general and during unprecedented health crises.

     
    more » « less
  2. Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes (a) proactive fixed-line schedule optimization based on predicted demand, (b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and (c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (i.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit. 
    more » « less
  3. null (Ed.)
    Public transit agencies struggle to maintain transit accessibility with reduced resources, unreliable ridership data, reduced vehicle capacities due to social distancing, and reduced services due to driver unavailability. In collaboration with transit agencies from two large metropolitan areas in the USA, we are designing novel approaches for addressing the afore-mentioned challenges by collecting accurate real-time ridership data, providing guidance to commuters, and performing operational optimization for public transit. We estimate rider-ship data using historical automated passenger counting data, conditional on a set of relevant determinants. Accurate ridership forecasting is essential to optimize the public transit schedule, which is necessary to improve current fixed lines with on-demand transit. Also, passenger crowding has been a problem for public transportation since it deteriorates passengers’ wellbeing and satisfaction. During the COVID-19 pandemic, passenger crowding has gained importance since it represents a risk for social distancing violations. Therefore, we are creating optimization models to ensure that social distancing norms can be adequately followed while ensuring that the total demand for transit is met. We will then use accurate forecasts for operational optimization that includes \textit(a) proactive fixed-line schedule optimization based on predicted demand, \textit(b) dispatch of on-demand micro-transit, prioritizing at-risk populations, and \textit(c) allocation of vehicles to transit and cargo trips, considering exigent vehicle maintenance requirements (\textiti.e., disinfection). Finally, this paper presents some initial results from our project regarding the estimation of ridership in public transit. 
    more » « less
  4. During COVID-19 lockdowns, transit agencies need to respond to the decline in travel but also maintain the essential mobility of transit-dependent people. However, there are a few lessons that scholars and practitioners can learn from. Using highway traffic data in the Twin Cities, this study applies a generalized additive model to explore the relationships among the share of low-income population, transit service, and highway traffic during the week that occurred right after the 2020 stay-at-home order. Our results substantiate that transportation impacts are spread unevenly across different income groups and low-income people are less able to reduce travel, leading to equity concerns. Moreover, transit supply influences highway traffic differently in areas with different shares of low-income people. Our study suggests that transportation agencies should provide more affordable travel options for areas with concentrated poverty during lockdowns. In addition, transit agencies should manage transit supply strategically depending on the share of low-income people to better meet people’s mobility needs. 
    more » « less
  5. null (Ed.)
    Public transit is central to cultivating equitable communities. Meanwhile, the novel coronavirus disease COVID-19 and associated social restrictions has radically transformed ridership behavior in urban areas. Perhaps the most concerning aspect of the COVID-19 pandemic is that low-income and historically marginalized groups are not only the most susceptible to economic shifts but are also most reliant on public transportation. As revenue decreases, transit agencies are tasked with providing adequate public transportation services in an increasingly hostile economic environment. Transit agencies therefore have two primary concerns. First, how has COVID-19 impacted ridership and what is the new post-COVID normal? Second, how has ridership varied spatio-temporally and between socio-economic groups? In this work we provide a data-driven analysis of COVID-19’s affect on public transit operations and identify temporal variation in ridership change. We then combine spatial distributions of ridership decline with local economic data to identify variation between socio-economic groups. We find that in Nashville and Chattanooga, TN, fixed-line bus ridership dropped by 66.9% and 65.1% from 2019 baselines before stabilizing at 48.4% and 42.8% declines respectively. The largest declines were during morning and evening commute time. Additionally, there was a significant difference in ridership decline between the highest-income areas and lowest-income areas (77% vs 58%) in Nashville. 
    more » « less